Searching for muscular dystrophy : 6 results found | RSS Feed for this search

Therapy for muscular dystrophy in the new genetics era

Description

From the 2010 Alumni Weekend. Duchene Muscular Dystrophy (DMD) is a genetic muscle wasting disease that causes great suffering to those experiencing it. Dr Kay Davies talks about the advances in molecular genetics which could help treat DMD. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

genetics | alumni | Health | Medicine | 2010 | muscular dystrophy | genetics | alumni | Health | Medicine | 2010 | muscular dystrophy | 2010-09-25

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129169/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Therapy for muscular dystrophy in the new genetics era

Description

From the 2010 Alumni Weekend. Duchene Muscular Dystrophy (DMD) is a genetic muscle wasting disease that causes great suffering to those experiencing it. Dr Kay Davies talks about the advances in molecular genetics which could help treat DMD. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

genetics | alumni | Health | Medicine | 2010 | muscular dystrophy | genetics | alumni | Health | Medicine | 2010 | muscular dystrophy | 2010-09-25

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129169/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 Antibiotics, Toxins, and Protein Engineering (MIT) 7.344 Antibiotics, Toxins, and Protein Engineering (MIT)

Description

The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced Und The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced Und

Subjects

lethal poison | lethal poison | Ricin | Ricin | Diphtheria | Diphtheria | contagious bacterial disease | contagious bacterial disease | tetracycline | tetracycline | protein synthesis | protein synthesis | drug resistance | drug resistance | protein engineering | protein engineering | cystic fibrosis | cystic fibrosis | muscular dystrophy | muscular dystrophy | ribosome | ribosome | ribosomal proteins | ribosomal proteins | rRNA | rRNA | mRNA | mRNA | tRNA | tRNA | translation factors | translation factors | genetic code | genetic code | E. coli ribosome | E. coli ribosome | prokaryotes | prokaryotes | eukaryotes | eukaryotes | Shiga | Shiga | Diphtheria toxin | Diphtheria toxin | Pseudomonas exotoxin A | Pseudomonas exotoxin A | Chloramphenicol | Chloramphenicol | Aminoglycoside | Aminoglycoside

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.161 Molecular Biology and Genetics in Modern Medicine (MIT) HST.161 Molecular Biology and Genetics in Modern Medicine (MIT)

Description

This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics. This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics.

Subjects

Genetics | Genetics | genes | genes | genetic disorders | genetic disorders | inborn error | inborn error | muscular dystrophy | muscular dystrophy | PKU | PKU | phenylketoneuria | phenylketoneuria | cancer | cancer | tumors | tumors | gene therapy | gene therapy | disease | disease | birth defects | birth defects | chromosomes | chromosomes | leukemia | leukemia | RNAi | RNAi | hemophilia | hemophilia | thalassemia | thalassemia | deafness | deafness | mutations | mutations | hypertrophic cardiomyopathy | hypertrophic cardiomyopathy | epigenetics | epigenetics | rett syndrome | rett syndrome | prenatal diagnosis | prenatal diagnosis | LOD scores | LOD scores | gene linkage | gene linkage | mitochondrial disorders | mitochondrial disorders | degenerative disorders | degenerative disorders | complex traits | complex traits | Mendelian inheritance | Mendelian inheritance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 Antibiotics, Toxins, and Protein Engineering (MIT)

Description

The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced Und

Subjects

lethal poison | Ricin | Diphtheria | contagious bacterial disease | tetracycline | protein synthesis | drug resistance | protein engineering | cystic fibrosis | muscular dystrophy | ribosome | ribosomal proteins | rRNA | mRNA | tRNA | translation factors | genetic code | E. coli ribosome | prokaryotes | eukaryotes | Shiga | Diphtheria toxin | Pseudomonas exotoxin A | Chloramphenicol | Aminoglycoside

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.161 Molecular Biology and Genetics in Modern Medicine (MIT)

Description

This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics.

Subjects

Genetics | genes | genetic disorders | inborn error | muscular dystrophy | PKU | phenylketoneuria | cancer | tumors | gene therapy | disease | birth defects | chromosomes | leukemia | RNAi | hemophilia | thalassemia | deafness | mutations | hypertrophic cardiomyopathy | epigenetics | rett syndrome | prenatal diagnosis | LOD scores | gene linkage | mitochondrial disorders | degenerative disorders | complex traits | Mendelian inheritance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata