Searching for mutation : 59 results found | RSS Feed for this search

1 2

7.344 Directed Evolution: Engineering Biocatalysts (MIT) 7.344 Directed Evolution: Engineering Biocatalysts (MIT)

Description

Directed evolution has been used to produce enzymes with many unique properties. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current Directed evolution has been used to produce enzymes with many unique properties. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current

Subjects

evolution | evolution | biocatalyst | biocatalyst | mutation | mutation | library | library | recombination | recombination | directed evolution | directed evolution | enzyme | enzyme | point mutation | point mutation | mutagenesis | mutagenesis | DNA | DNA | gene | gene | complementation | complementation | affinity | affinity | phage | phage | ribosome display | ribosome display | yeast surface display | yeast surface display | bacterial cell surface display | bacterial cell surface display | IVC | IVC | FACS | FACS | active site | active site

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.03 Genetics (MIT) 7.03 Genetics (MIT)

Description

This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease. This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subjects

genetics | genetics | gene | gene | DNA | DNA | RNA | RNA | mutation | mutation | genome | genome | Watson and Crick | Watson and Crick | replication | replication | transcription | transcription | DNA heliz | DNA heliz | double helix | double helix | mRNA | mRNA | messenger RNA | messenger RNA | translation | translation | ribosome | ribosome | promoter | promoter | genetic analysis | genetic analysis | alleles | alleles | genotype | genotype | wild type | wild type | phenotype | phenotype | haploid | haploid | diploid | diploid | auxotrophic mutation | auxotrophic mutation | homozygous | homozygous | heterozygous | heterozygous | recessive allele | recessive allele | dominant allele | dominant allele | complementation test | complementation test | locus | locus | incomplete dominance | incomplete dominance | incomplete penetrance | incomplete penetrance | true-breeding | true-breeding | gametes | gametes | codominant | codominant | meiosis | meiosis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science). This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science).

Subjects

mathematical definitions | mathematical definitions | proofs and applicable methods | proofs and applicable methods | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | well-ordering | well-ordering | sets | sets | relations | relations | elementary graph theory | elementary graph theory | integer congruences | integer congruences | asymptotic notation and growth of functions | asymptotic notation and growth of functions | permutations and combinations | counting principles | permutations and combinations | counting principles | discrete probability | discrete probability | recursive definition | recursive definition | structural induction | structural induction | state machines and invariants | state machines and invariants | recurrences | recurrences | generating functions | generating functions | permutations and combinations | permutations and combinations | counting principles | counting principles | discrete mathematics | discrete mathematics | computer science | computer science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT)

Description

This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science).

Subjects

mathematical definitions | proofs and applicable methods | formal logic notation | proof methods | induction | well-ordering | sets | relations | elementary graph theory | integer congruences | asymptotic notation and growth of functions | permutations and combinations | counting principles | discrete probability | recursive definition | structural induction | state machines and invariants | recurrences | generating functions | permutations and combinations | counting principles | discrete mathematics | computer science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Avoiding Genomic Instability: DNA Replication, the Cell Cycle, and Cancer (MIT) 7.340 Avoiding Genomic Instability: DNA Replication, the Cell Cycle, and Cancer (MIT)

Description

In this class we will learn about how the process of DNA replication is regulated throughout the cell cycle and what happens when DNA replication goes awry. How does the cell know when and where to begin replicating its DNA? How does a cell prevent its DNA from being replicated more than once? How does damaged DNA cause the cell to arrest DNA replication until that damage has been repaired? And how is the duplication of the genome coordinated with other essential processes? We will examine both classical and current papers from the scientific literature to provide answers to these questions and to gain insights into how biologists have approached such problems. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored f In this class we will learn about how the process of DNA replication is regulated throughout the cell cycle and what happens when DNA replication goes awry. How does the cell know when and where to begin replicating its DNA? How does a cell prevent its DNA from being replicated more than once? How does damaged DNA cause the cell to arrest DNA replication until that damage has been repaired? And how is the duplication of the genome coordinated with other essential processes? We will examine both classical and current papers from the scientific literature to provide answers to these questions and to gain insights into how biologists have approached such problems. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored f

Subjects

cell | cell | genetic material | genetic material | cell death | cell death | tumorigenesis | tumorigenesis | mutations | mutations | genes | genes | DNA replication | DNA replication | cell cycle | cell cycle | damaged DNA | damaged DNA | genome | genome | tumor formation | tumor formation | anti-cancer drugs | anti-cancer drugs | viruses | viruses | cellular controls | cellular controls

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.322J Genetic Neurobiology (MIT) 9.322J Genetic Neurobiology (MIT)

Description

Deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior, by functional analysis of mutations and molecular analysis of their genes. Concentrates on work with nematodes, fruit flies, mice, and humans. Deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior, by functional analysis of mutations and molecular analysis of their genes. Concentrates on work with nematodes, fruit flies, mice, and humans.

Subjects

functions of neurons | functions of neurons | interactions of neurons | interactions of neurons | development | development | organization | organization | behavior | behavior | functional analysis of mutations | functional analysis of mutations | molecular analysis of genes | molecular analysis of genes | nematodes | nematodes | fruit flies | fruit flies | humans | humans | 9.322 | 9.322

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Cancer Biology: From Basic Research to the Clinic (MIT) 7.342 Cancer Biology: From Basic Research to the Clinic (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In 1971, President Nixon declared the "War on Cancer," but after three decades the war is still raging. How much progress have we made toward winning the war and what are we doing to improve the fight? Understanding the molecular and cellular events involved in tumor formation, progression, and metastasis is crucial to the development of innovative therapy for cancer patients. Insights into these processes have been gleaned through basic research using biochemical, molecular, and genetic ana This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In 1971, President Nixon declared the "War on Cancer," but after three decades the war is still raging. How much progress have we made toward winning the war and what are we doing to improve the fight? Understanding the molecular and cellular events involved in tumor formation, progression, and metastasis is crucial to the development of innovative therapy for cancer patients. Insights into these processes have been gleaned through basic research using biochemical, molecular, and genetic ana

Subjects

cancer | cancer | tumor | tumor | metastasis | metastasis | genetic analysis | genetic analysis | cancer biology | cancer biology | model organisms | model organisms | genetic pathways | genetic pathways | uncontrolled growth | uncontrolled growth | tumor suppressor genes | tumor suppressor genes | oncogenes | oncogenes | tumor initiation | tumor initiation | cell cycle | cell cycle | chromosomal aberration | chromosomal aberration | apoptosis | apoptosis | cell death | cell death | signal transduction pathways | signal transduction pathways | proto-oncogene | proto-oncogene | mutation | mutation | DNA mismatch repair | DNA mismatch repair | telomeres | telomeres | mouse models | mouse models | tissue specificity | tissue specificity | malignancy | malignancy | stem cells | stem cells | therapeutic resistance | therapeutic resistance | differentiation | differentiation | caner research | caner research | cancer therapeutics | cancer therapeutics | chemotherapy | chemotherapy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

Includes audio/video content: AV lectures. This subject offers an interactive introduction to discrete mathematics oriented toward computer science and engineering. The subject coverage divides roughly into thirds: Fundamental concepts of mathematics: Definitions, proofs, sets, functions, relations. Discrete structures: graphs, state machines, modular arithmetic, counting. Discrete probability theory. On completion of 6.042J, students will be able to explain and apply the basic methods of discrete (noncontinuous) mathematics in computer science. They will be able to use these methods in subsequent courses in the design and analysis of algorithms, computability theory, software engineering, and computer systems.Interactive site components can be found on the Unit pages in the Includes audio/video content: AV lectures. This subject offers an interactive introduction to discrete mathematics oriented toward computer science and engineering. The subject coverage divides roughly into thirds: Fundamental concepts of mathematics: Definitions, proofs, sets, functions, relations. Discrete structures: graphs, state machines, modular arithmetic, counting. Discrete probability theory. On completion of 6.042J, students will be able to explain and apply the basic methods of discrete (noncontinuous) mathematics in computer science. They will be able to use these methods in subsequent courses in the design and analysis of algorithms, computability theory, software engineering, and computer systems.Interactive site components can be found on the Unit pages in the

Subjects

6.042 | 6.042 | 18.062 | 18.062 | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | sets | sets | relations | relations | graph theory | graph theory | integer congruences | integer congruences | asymptotic notation | asymptotic notation | growth of functions | growth of functions | permutations | permutations | combinations | combinations | counting | counting | discrete probability | discrete probability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.346 DNA Wars: How the Cell Strikes Back to Avoid Disease after Attacks on DNA (MIT) 7.346 DNA Wars: How the Cell Strikes Back to Avoid Disease after Attacks on DNA (MIT)

Description

A never-ending molecular war takes place in the nucleus of your cells, with DNA damage occurring at a rate of over 20,000 lesions per cell per day. Where does this damage come from, and what are its consequences? What are the differences in the molecular blueprint between individuals who can sustain attacks on DNA and remain healthy compared to those who become sick? This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching. A never-ending molecular war takes place in the nucleus of your cells, with DNA damage occurring at a rate of over 20,000 lesions per cell per day. Where does this damage come from, and what are its consequences? What are the differences in the molecular blueprint between individuals who can sustain attacks on DNA and remain healthy compared to those who become sick? This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subjects

DNA damage | DNA damage | DNA repair | DNA repair | mismatch repair | mismatch repair | direct reversal | direct reversal | nucleotide excision repair | nucleotide excision repair | base excision repair | base excision repair | double strand break repair | double strand break repair | nuclear DNA damage | nuclear DNA damage | mitochondrial DNA damage | mitochondrial DNA damage | Alkylating agents | Alkylating agents | replication errors | replication errors | mutations | mutations | epigenetics | epigenetics | Werner helicase activity | Werner helicase activity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.351 Systems Analysis of the Nuclear Fuel Cycle (MIT) 22.351 Systems Analysis of the Nuclear Fuel Cycle (MIT)

Description

In-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, reprocessing and waste disposal. Principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors are presented. Nonproliferation aspects, disposal of excess weapons plutonium, and transmutation of actinides and selected fission products in spent fuel are examined. Several state-of-the-art computer programs are provided for student use in problem sets and term papers. In-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, reprocessing and waste disposal. Principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors are presented. Nonproliferation aspects, disposal of excess weapons plutonium, and transmutation of actinides and selected fission products in spent fuel are examined. Several state-of-the-art computer programs are provided for student use in problem sets and term papers.

Subjects

nuclear fuel cycle | nuclear fuel cycle | uranium supply | uranium supply | enrichment fuel fabrication | enrichment fuel fabrication | in-core physics | in-core physics | fuel cycle economics | fuel cycle economics | applied reactor physics | applied reactor physics | Nonproliferation aspects | Nonproliferation aspects | disposal of excess weapons plutonium | disposal of excess weapons plutonium | transmutation of actinides | transmutation of actinides | fission products | fission products | spent fuel | spent fuel

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

24.946 Linguistic Theory and the Japanese Language (MIT) 24.946 Linguistic Theory and the Japanese Language (MIT)

Description

This course is a detailed examination of the grammar of Japanese and its structure which is significantly different from English, with special emphasis on problems of interest in the study of linguistic universals. Data from a broad group of languages is studied for comparison with Japanese. This course assumes familiarity with linguistic theory. This course is a detailed examination of the grammar of Japanese and its structure which is significantly different from English, with special emphasis on problems of interest in the study of linguistic universals. Data from a broad group of languages is studied for comparison with Japanese. This course assumes familiarity with linguistic theory.

Subjects

Linguistics | Linguistics | Linguistic Theory | Linguistic Theory | Japanese | Japanese | Language | Language | theoretical linguistics | theoretical linguistics | A-positions | A-positions | A-chains | A-chains | A'-positions | A'-positions | A'-chains | A'-chains | Double-object construction | Double-object construction | Possessor raising | Possessor raising | locational verbs | locational verbs | Binding | Binding | External argument | External argument | causative construction | causative construction | reconstruction | reconstruction | word-order permutation | word-order permutation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-24.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT)

Description

This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science).

Subjects

mathematical definitions | proofs and applicable methods | formal logic notation | proof methods | induction | well-ordering | sets | relations | elementary graph theory | integer congruences | asymptotic notation and growth of functions | permutations and combinations | counting principles | discrete probability | recursive definition | structural induction | state machines and invariants | recurrences | generating functions | permutations and combinations | counting principles | discrete mathematics | computer science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lecture 18: Puzzles Lecture 18: Puzzles

Description

Description: Puzzles are a popular type of game, characterized by a strict ruleset and (ideally) a single solution. They may appear on their own or embedded into a larger narrative, sometimes representing a similar real-life mechanism (e.g. unlocking a door). Instructors/speakers: Philip Tan, Jason BegyKeywords: puzzle, algorithm, mathematics, learning curve, Sudoku, crosswords, tangrams, Mystery Hunt, Portal, Rubik's Cube, rebus, logic, riddles, determinism, combinatorics, permutations, cryptographyTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA) Description: Puzzles are a popular type of game, characterized by a strict ruleset and (ideally) a single solution. They may appear on their own or embedded into a larger narrative, sometimes representing a similar real-life mechanism (e.g. unlocking a door). Instructors/speakers: Philip Tan, Jason BegyKeywords: puzzle, algorithm, mathematics, learning curve, Sudoku, crosswords, tangrams, Mystery Hunt, Portal, Rubik's Cube, rebus, logic, riddles, determinism, combinatorics, permutations, cryptographyTranscript: PDFSubtitles: SRTAudio - download: Internet Archive (MP3)Audio - download: iTunes U (MP3)(CC BY-NC-SA)

Subjects

puzzle | puzzle | algorithm | algorithm | mathematics | mathematics | learning curve | learning curve | Sudoku | Sudoku | crosswords | crosswords | tangrams | tangrams | Mystery Hunt | Mystery Hunt | Portal | Portal | Rubik's Cube | Rubik's Cube | rebus | rebus | logic | logic | riddles | riddles | determinism | determinism | combinatorics | combinatorics | permutations | permutations | cryptography | cryptography

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/courses/comparative-media-studies/cms-608-game-design-fall-2010/audio-lectures/rss.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 Directed Evolution: Engineering Biocatalysts (MIT)

Description

Directed evolution has been used to produce enzymes with many unique properties. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current

Subjects

evolution | biocatalyst | mutation | library | recombination | directed evolution | enzyme | point mutation | mutagenesis | DNA | gene | complementation | affinity | phage | ribosome display | yeast surface display | bacterial cell surface display | IVC | FACS | active site

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.S66 The Art of Counting (MIT) 18.S66 The Art of Counting (MIT)

Description

The subject of enumerative combinatorics deals with counting the number of elements of a finite set. For instance, the number of ways to write a positive integer n as a sum of positive integers, taking order into account, is 2n-1. We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them. This is a subject which requires little mathematical background to reach the frontiers of current research. Students will therefore have the opportunity to do original research. It might be necessary to limit enrollment. The subject of enumerative combinatorics deals with counting the number of elements of a finite set. For instance, the number of ways to write a positive integer n as a sum of positive integers, taking order into account, is 2n-1. We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them. This is a subject which requires little mathematical background to reach the frontiers of current research. Students will therefore have the opportunity to do original research. It might be necessary to limit enrollment.

Subjects

enumerative combinatorics | enumerative combinatorics | finite set | finite set | sum of positive integers | sum of positive integers | bijective proofs | bijective proofs | bijection (one-to-one correspondence) | bijection (one-to-one correspondence) | permutations | permutations | partitions | partitions | Catalan numbers | Catalan numbers | Young tableaux | Young tableaux | lattice paths and tilings | lattice paths and tilings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.03 Genetics (MIT) 7.03 Genetics (MIT)

Description

The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease. The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subjects

Population genetics | Population genetics | selection | selection | mutation | mutation | recombination | recombination | genomes | genomes | chromosomes | chromosomes | genes | genes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.102 Macroepidemiology (BE.102) (MIT) 20.102 Macroepidemiology (BE.102) (MIT)

Description

This course presents a challenging multi-dimensional perspective on the causes of human disease and mortality. The course focuses on analyses of major causes of mortality in the US since 1900: cancer, cardiovascular and cerebrovascular diseases, diabetes, and infectious diseases. Students create analytical models to derive estimates for historically variant population risk factors and physiological rate parameters, and conduct analyses of familial data to separately estimate inherited and environmental risks. The course evaluates the basic population genetics of dominant, recessive and non-deleterious inherited risk factors. This course presents a challenging multi-dimensional perspective on the causes of human disease and mortality. The course focuses on analyses of major causes of mortality in the US since 1900: cancer, cardiovascular and cerebrovascular diseases, diabetes, and infectious diseases. Students create analytical models to derive estimates for historically variant population risk factors and physiological rate parameters, and conduct analyses of familial data to separately estimate inherited and environmental risks. The course evaluates the basic population genetics of dominant, recessive and non-deleterious inherited risk factors.

Subjects

Disease | Disease | mortality | mortality | cancer | cancer | cerebrovascular disease | cerebrovascular disease | diabetes | diabetes | infectious disease | infectious disease | risk | risk | inherited risk | inherited risk | environmental risk | environmental risk | population genetics | population genetics | mutation | mutation | public health | public health | malignancy | malignancy | statistics | statistics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.03 Genetics (MIT)

Description

This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subjects

genetics | gene | DNA | RNA | mutation | genome | Watson and Crick | replication | transcription | DNA heliz | double helix | mRNA | messenger RNA | translation | ribosome | promoter | genetic analysis | alleles | genotype | wild type | phenotype | haploid | diploid | auxotrophic mutation | homozygous | heterozygous | recessive allele | dominant allele | complementation test | locus | incomplete dominance | incomplete penetrance | true-breeding | gametes | codominant | meiosis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.161 Molecular Biology and Genetics in Modern Medicine (MIT) HST.161 Molecular Biology and Genetics in Modern Medicine (MIT)

Description

This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics. This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics.

Subjects

Genetics | Genetics | genes | genes | genetic disorders | genetic disorders | inborn error | inborn error | muscular dystrophy | muscular dystrophy | PKU | PKU | phenylketoneuria | phenylketoneuria | cancer | cancer | tumors | tumors | gene therapy | gene therapy | disease | disease | birth defects | birth defects | chromosomes | chromosomes | leukemia | leukemia | RNAi | RNAi | hemophilia | hemophilia | thalassemia | thalassemia | deafness | deafness | mutations | mutations | hypertrophic cardiomyopathy | hypertrophic cardiomyopathy | epigenetics | epigenetics | rett syndrome | rett syndrome | prenatal diagnosis | prenatal diagnosis | LOD scores | LOD scores | gene linkage | gene linkage | mitochondrial disorders | mitochondrial disorders | degenerative disorders | degenerative disorders | complex traits | complex traits | Mendelian inheritance | Mendelian inheritance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Java Preparation for 6.170 (MIT) 6.092 Java Preparation for 6.170 (MIT)

Description

This course focuses on introducing the language, libraries, tools and concepts of JavaTM. The course is specifically targeted at students who intend to take 6.170 in the following term and feel they would struggle because they lack the necessary background. Topics include: Object-oriented programming, primitives, arrays, objects, inheritance, interfaces, polymorphism, hashing, data structures, collections, nested classes, floating point precision, defensive programming, and depth-first search algorithm. This course focuses on introducing the language, libraries, tools and concepts of JavaTM. The course is specifically targeted at students who intend to take 6.170 in the following term and feel they would struggle because they lack the necessary background. Topics include: Object-oriented programming, primitives, arrays, objects, inheritance, interfaces, polymorphism, hashing, data structures, collections, nested classes, floating point precision, defensive programming, and depth-first search algorithm.

Subjects

Object oriented programming | Object oriented programming | Java program structure | Java program structure | class file | main | methods | fields | class file | main | methods | fields | Primitives | Primitives | Control flow | method calls | if/then | for loop | while loop | Control flow | method calls | if/then | for loop | while loop | Arrays | Arrays | Objects | declaration | assignment | mutation | scope | Objects | declaration | assignment | mutation | scope | Classes vs Objects/Instances | Classes vs Objects/Instances | Method Overloading | Method Overloading | Inheritence | Inheritence | Abstract superclasses | Abstract superclasses | Interfaces | Interfaces | Polymorphism | Polymorphism | Method Overriding | Method Overriding | Hashing | Hashing | Data structures | Data structures | Collections | Collections | Advanced control flow | Advanced control flow | Writing interfaces | abstract classes | Writing interfaces | abstract classes | True subtyping | composite | True subtyping | composite | Throwing and catching exceptions | Throwing and catching exceptions | Nested classes | Nested classes | Floating point precision | Floating point precision | Defensive programming | Defensive programming | Depth First Search alogithm | Depth First Search alogithm

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.102 Macroepidemiology (MIT) BE.102 Macroepidemiology (MIT)

Description

This course presents a challenging multi-dimensional perspective on the causes of human disease and mortality. The course focuses on analyses of major causes of mortality in the US since 1900: cancer, cardiovascular and cerebrovascular diseases, diabetes, and infectious diseases. Students create analytical models to derive estimates for historically variant population risk factors and physiological rate parameters, and conduct analyses of familial data to separately estimate inherited and environmental risks. The course evaluates the basic population genetics of dominant, recessive and non-deleterious inherited risk factors. Technical RequirementsJava® plug-in software is required to run the Java® files found on this course site. Microsoft® Excel s This course presents a challenging multi-dimensional perspective on the causes of human disease and mortality. The course focuses on analyses of major causes of mortality in the US since 1900: cancer, cardiovascular and cerebrovascular diseases, diabetes, and infectious diseases. Students create analytical models to derive estimates for historically variant population risk factors and physiological rate parameters, and conduct analyses of familial data to separately estimate inherited and environmental risks. The course evaluates the basic population genetics of dominant, recessive and non-deleterious inherited risk factors. Technical RequirementsJava® plug-in software is required to run the Java® files found on this course site. Microsoft® Excel s

Subjects

Disease | Disease | mortality | mortality | cancer | cancer | cerebrovascular disease | cerebrovascular disease | diabetes | diabetes | infectious disease | infectious disease | risk | risk | inherited risk | inherited risk | environmental risk | environmental risk | population genetics | population genetics | mutation | mutation | public health | public health | malignancy | malignancy | statistics | statistics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability. This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability.

Subjects

Elementary discrete mathematics for computer science and engineering | Elementary discrete mathematics for computer science and engineering | mathematical definitions | mathematical definitions | proofs and applicable methods | proofs and applicable methods | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | well-ordering | well-ordering | sets | sets | relations | relations | elementary graph theory | elementary graph theory | integer congruences | integer congruences | asymptotic notation and growth of functions | asymptotic notation and growth of functions | permutations and combinations | permutations and combinations | counting principles | counting principles | discrete probability | discrete probability | recursive definition | recursive definition | structural induction | structural induction | state machines and invariants | state machines and invariants | recurrences | recurrences | generating functions | generating functions | 6.042 | 6.042 | 18.062 | 18.062

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Description

Professor Gil McVean tells us how statistical genetics helps us understand and treat disease. Prof Gil McVean is the Head of Bioinformatics and Statistical Genetics at the Wellcome Trust Centre for Human Genetics. His research covers several areas in the analysis of genetic variation, combining the development of methods for analysing high throughput sequencing data, theoretical work and empirical analysis. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

Statistical Genetics | population genetics | mutations | Statistical Genetics | population genetics | mutations

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.345 The Science of Sperm (MIT) 7.345 The Science of Sperm (MIT)

Description

Sperm are tiny, haploid cells with a supremely important job: They deliver the paternal genome to the egg, helping create a zygote that develops into a new individual. For a human male, however, only a small fraction of the sperm produced will ever fertilize an egg. Sperm thus experience intense selective pressure: They must compete against each other, navigate a foreign environment in the female reproductive tract, and interact specifically and appropriately with the surface of the egg. These selective pressures can drive extreme changes in morphology and gene function over short evolutionary time scales, resulting in amazing diversity among species. In this course, we will explore the ways in which these unique evolutionary forces contribute to incredible specializations of sperm form an Sperm are tiny, haploid cells with a supremely important job: They deliver the paternal genome to the egg, helping create a zygote that develops into a new individual. For a human male, however, only a small fraction of the sperm produced will ever fertilize an egg. Sperm thus experience intense selective pressure: They must compete against each other, navigate a foreign environment in the female reproductive tract, and interact specifically and appropriately with the surface of the egg. These selective pressures can drive extreme changes in morphology and gene function over short evolutionary time scales, resulting in amazing diversity among species. In this course, we will explore the ways in which these unique evolutionary forces contribute to incredible specializations of sperm form an

Subjects

sperm | sperm | sperm biology | sperm biology | haploid cells | haploid cells | sperm development | sperm development | selective forces | selective forces | meiotic cell division | meiotic cell division | protamines | protamines | fertilization | fertilization | evolutionary analysis | evolutionary analysis | reproductive biology | reproductive biology | spermatogenesis | spermatogenesis | spermatogenic cycle | spermatogenic cycle | germline mutations | germline mutations | FGFR2 gene | FGFR2 gene | germ line selection | germ line selection | Fragile X syndrome | Fragile X syndrome | Meiotic recombination | Meiotic recombination | sperm bundling | sperm bundling | Sperm Cooperation | Sperm Cooperation | sperm competition | sperm competition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.01SC Fundamentals of Biology (MIT) 7.01SC Fundamentals of Biology (MIT)

Description

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality. Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.

Subjects

amino acids | amino acids | carboxyl group | carboxyl group | amino group | amino group | side chains | side chains | polar | polar | hydrophobic | hydrophobic | primary structure | primary structure | secondary structure | secondary structure | tertiary structure | tertiary structure | quaternary structure | quaternary structure | x-ray crystallography | x-ray crystallography | alpha helix | alpha helix | beta sheet | beta sheet | ionic bond | ionic bond | non-polar bond | non-polar bond | van der Waals interactions | van der Waals interactions | proton gradient | proton gradient | cyclic photophosphorylation | cyclic photophosphorylation | sunlight | sunlight | ATP | ATP | chlorophyll | chlorophyll | chlorophyll a | chlorophyll a | electrons | electrons | hydrogen sulfide | hydrogen sulfide | biosynthesis | biosynthesis | non-cyclic photophosphorylation | non-cyclic photophosphorylation | photosystem II | photosystem II | photosystem I | photosystem I | cyanobacteria | cyanobacteria | chloroplast | chloroplast | stroma | stroma | thylakoid membrane | thylakoid membrane | Genetics | Genetics | Mendel | Mendel | Mendel's Laws | Mendel's Laws | cloning | cloning | restriction enzymes | restriction enzymes | vector | vector | insert DNA | insert DNA | ligase | ligase | library | library | E.Coli | E.Coli | phosphatase | phosphatase | yeast | yeast | transformation | transformation | ARG1 gene | ARG1 gene | ARG1 mutant yeast | ARG1 mutant yeast | yeast wild-type | yeast wild-type | cloning by complementation | cloning by complementation | Human Beta Globin gene | Human Beta Globin gene | protein tetramer | protein tetramer | vectors | vectors | antibodies | antibodies | human promoter | human promoter | splicing | splicing | mRNA | mRNA | cDNA | cDNA | reverse transcriptase | reverse transcriptase | plasmid | plasmid | electrophoresis | electrophoresis | DNA sequencing | DNA sequencing | primer | primer | template | template | capillary tube | capillary tube | laser detector | laser detector | human genome project | human genome project | recombinant DNA | recombinant DNA | clone | clone | primer walking | primer walking | subcloning | subcloning | computer assembly | computer assembly | shotgun sequencing | shotgun sequencing | open reading frame | open reading frame | databases | databases | polymerase chain reaction (PCR) | polymerase chain reaction (PCR) | polymerase | polymerase | nucleotides | nucleotides | Thermus aquaticus | Thermus aquaticus | Taq polymerase | Taq polymerase | thermocycler | thermocycler | resequencing | resequencing | in vitro fertilization | in vitro fertilization | pre-implantation diagnostics | pre-implantation diagnostics | forensics | forensics | genetic engineering | genetic engineering | DNA sequences | DNA sequences | therapeutic proteins | therapeutic proteins | E. coli | E. coli | disease-causing mutations | disease-causing mutations | cleavage of DNA | cleavage of DNA | bacterial transformation | bacterial transformation | recombinant DNA revolution | recombinant DNA revolution | biotechnology industry | biotechnology industry | Robert Swanson | Robert Swanson | toxin gene | toxin gene | pathogenic bacterium | pathogenic bacterium | biomedical research | biomedical research | S. Pyogenes | S. Pyogenes | origin of replication | origin of replication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata