Searching for nano : 99 results found | RSS Feed for this search

1 2 3 4

2.76 Multi-Scale System Design (MIT) 2.76 Multi-Scale System Design (MIT)

Description

Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials

Subjects

scale | scale | complexity | complexity | nano | micro | meso | or macro-scale | nano | micro | meso | or macro-scale | kinematics | kinematics | metrology | metrology | engineering modeling | motion | engineering modeling | motion | modeling | modeling | design | design | manufacture | manufacture | design principles | design principles | fabrication process | fabrication process | functional requirements | functional requirements | precision instruments | precision instruments | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | piezoelectric | transducer | actuator | sensor | piezoelectric | transducer | actuator | sensor | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constaint-based design | constaint-based design | carbon nanotube | carbon nanotube | nanowire | nanowire | scanning tunneling microscope | scanning tunneling microscope | flexure | flexure | protein structure | protein structure | polymer structure | polymer structure | nanopelleting | nanopipette | nanowire | nanopelleting | nanopipette | nanowire | TMA pixel array | TMA pixel array | error modeling | error modeling | repeatability | repeatability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.76 Multi-Scale System Design (MIT)

Description

Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials

Subjects

scale | complexity | nano | micro | meso | or macro-scale | kinematics | metrology | engineering modeling | motion | modeling | design | manufacture | design principles | fabrication process | functional requirements | precision instruments | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | piezoelectric | transducer | actuator | sensor | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constaint-based design | carbon nanotube | nanowire | scanning tunneling microscope | flexure | protein structure | polymer structure | nanopelleting | nanopipette | nanowire | TMA pixel array | error modeling | repeatability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.982 Bio-Inspired Structures (MIT) 16.982 Bio-Inspired Structures (MIT)

Description

This course is offered for graduate students who are interested in the interdisciplinary study of bio-inspired structures. The intent is to introduce students to newly inspired modern advanced structures and their applications. It aims to link traditional advanced composites to bio-inspired structures and to discuss their generic properties. A link between materials design, strength and structural behavior at different levels (material, element, structural and system levels) is made. For each level, various concepts will be introduced. The importance of structural, dynamic, thermodynamic and kinetic theories related to such processing is highlighted. The pedagogy is based on active learning and a balance of guest lectures and hands-on activities. This course is offered for graduate students who are interested in the interdisciplinary study of bio-inspired structures. The intent is to introduce students to newly inspired modern advanced structures and their applications. It aims to link traditional advanced composites to bio-inspired structures and to discuss their generic properties. A link between materials design, strength and structural behavior at different levels (material, element, structural and system levels) is made. For each level, various concepts will be introduced. The importance of structural, dynamic, thermodynamic and kinetic theories related to such processing is highlighted. The pedagogy is based on active learning and a balance of guest lectures and hands-on activities.

Subjects

biomimetics | biomimetics | nanotechnology | nanotechnology | smart structures | smart structures | morphing structures | morphing structures | material properties | material properties | nanostructures | nanostructures | self-assembly | self-assembly | structural behavior | structural behavior | nanoparticles | nanoparticles | integrative design | integrative design | bioactive material | bioactive material | nanomanufacturing | nanomanufacturing | smart materials | smart materials | biosensors | biosensors | multifunctional materials | multifunctional materials | bio-inspired structures | bio-inspired structures

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.57 Nano-to-Macro Transport Processes (MIT) 2.57 Nano-to-Macro Transport Processes (MIT)

Description

This course provides parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology. This course provides parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.

Subjects

nanotechnology | nanotechnology | nanoscale | nanoscale | transport phenomena | transport phenomena | photons | photons | electrons | electrons | phonons | phonons | energy carriers | energy carriers | energy transport | energy transport | heat transport | heat transport | energy levels | energy levels | statistical behavior | statistical behavior | internal energy | internal energy | waves and particles | waves and particles | scattering | scattering | heat generation | heat generation | Boltzmann equation | Boltzmann equation | classical laws | classical laws | microtechnology | microtechnology | crystal | crystal | lattice | lattice | quantum oscillator | quantum oscillator | laudaurer | laudaurer | nanotube | nanotube | Louiville equation | Louiville equation | X-ray | X-ray | blackbody | blackbody | quantum well | quantum well | Fourier | Fourier | Newton | Newton | Ohm | Ohm | thermoelectric effect | thermoelectric effect | Brownian motion | Brownian motion | surface tension | surface tension | van der Waals potential. | van der Waals potential. | van der Waals potential | van der Waals potential

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Nanomedicine: Challenges and opportunities

Description

Nanotechnology has the potential to transform the way that medical and healthcare solutions are developed and delivered, this talk reviews the properties of nanomaterials for medical applications and the challenges and opportunities of their use. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

Medicine | nanotechnology | nanomedicine | healthcare | Medicine | nanotechnology | nanomedicine | healthcare | 2011-09-16

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129169/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Nanomedicine: Challenges and opportunities

Description

Nanotechnology has the potential to transform the way that medical and healthcare solutions are developed and delivered, this talk reviews the properties of nanomaterials for medical applications and the challenges and opportunities of their use. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

Medicine | nanotechnology | nanomedicine | healthcare | Medicine | nanotechnology | nanomedicine | healthcare | 2011-09-16

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129169/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.57 Nano-to-Macro Transport Processes (MIT) 2.57 Nano-to-Macro Transport Processes (MIT)

Description

Includes audio/video content: AV lectures. Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology. Includes audio/video content: AV lectures. Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.

Subjects

nanotechnology | nanotechnology | nanostructure | nanostructure | energy | energy | energy transport | energy transport | energy storage | energy storage | energy carriers | energy carriers | quantum mechanics | quantum mechanics | quantum physics | quantum physics | thermoelectrics | thermoelectrics | semiconductor physics | semiconductor physics | solar cells | solar cells | waves and particles | waves and particles

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.052 Nanomechanics of Materials and Biomaterials (MIT) 3.052 Nanomechanics of Materials and Biomaterials (MIT)

Description

This course focuses on the latest scientific developments and discoveries in the field of nanomechanics, the study of forces and motion on extremely tiny (10-9 m) areas of synthetic and biological materials and structures. At this level, mechanical properties are intimately related to chemistry, physics, and quantum mechanics. Most lectures will consist of a theoretical component that will then be compared to recent experimental data (case studies) in the literature. The course begins with a series of introductory lectures that describes the normal and lateral forces acting at the atomic scale. The following discussions include experimental techniques in high resolution force spectroscopy, atomistic aspects of adhesion, nanoindentation, molecular details of fracture, chemical force microsc This course focuses on the latest scientific developments and discoveries in the field of nanomechanics, the study of forces and motion on extremely tiny (10-9 m) areas of synthetic and biological materials and structures. At this level, mechanical properties are intimately related to chemistry, physics, and quantum mechanics. Most lectures will consist of a theoretical component that will then be compared to recent experimental data (case studies) in the literature. The course begins with a series of introductory lectures that describes the normal and lateral forces acting at the atomic scale. The following discussions include experimental techniques in high resolution force spectroscopy, atomistic aspects of adhesion, nanoindentation, molecular details of fracture, chemical force microsc

Subjects

biology | biology | biological engineering | biological engineering | cells | cells | AFM | AFM | atomic force microscope | atomic force microscope | nanoindentation | nanoindentation | gecko | gecko | malaria | malaria | nanotube | nanotube | collagen | collagen | polymer | polymer | seashell | seashell | biomimetics | biomimetics | molecule | molecule | atomic | atomic | bonding | bonding | adhesion | adhesion | quantum mechanics | quantum mechanics | physics | physics | chemistry | chemistry | protein | protein | DNA | DNA | bone | bone | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.781J Submicrometer and Nanometer Technology (MIT) 6.781J Submicrometer and Nanometer Technology (MIT)

Description

Includes audio/video content: AV special element video. This course surveys techniques to fabricate and analyze submicron and nanometer structures, with applications. Optical and electron microscopy is reviewed. Additional topics that are covered include: surface characterization, preparation, and measurement techniques, resist technology, optical projection, interferometric, X-ray, ion, and electron lithography; Aqueous, ion, and plasma etching techniques; lift-off and electroplating; and ion implantation. Applications in microelectronics, microphotonics, information storage, and nanotechnology will also be explored.AcknowledgementsThe Instructors would like to thank Bob Barsotti, Bryan Cord, and Ben Wunsch for their work on the Atomic Force Microscope video. They would also like to thank Includes audio/video content: AV special element video. This course surveys techniques to fabricate and analyze submicron and nanometer structures, with applications. Optical and electron microscopy is reviewed. Additional topics that are covered include: surface characterization, preparation, and measurement techniques, resist technology, optical projection, interferometric, X-ray, ion, and electron lithography; Aqueous, ion, and plasma etching techniques; lift-off and electroplating; and ion implantation. Applications in microelectronics, microphotonics, information storage, and nanotechnology will also be explored.AcknowledgementsThe Instructors would like to thank Bob Barsotti, Bryan Cord, and Ben Wunsch for their work on the Atomic Force Microscope video. They would also like to thank

Subjects

submicron and nanometer structures | submicron and nanometer structures | optical and electron microscopy | optical and electron microscopy | Surface characterization | Surface characterization | preparation | preparation | and measurement techniques | and measurement techniques | Resist technology | Resist technology | optical projection | optical projection | interferometric | interferometric | X-ray | X-ray | ion | ion | and electron lithography | and electron lithography | Aqueous | Aqueous | and plasma etching techniques | and plasma etching techniques | Lift-off and electroplating | Lift-off and electroplating | Ion implantation | Ion implantation | microelectronics | microelectronics | microphotonics | microphotonics | information storage | information storage | and nanotechnology | and nanotechnology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.978 From Nano to Macro: Introduction to Atomistic Modeling Techniques (MIT) 1.978 From Nano to Macro: Introduction to Atomistic Modeling Techniques (MIT)

Description

The objective of this course is to introduce large-scale atomistic modeling techniques and highlight its importance for solving problems in modern engineering sciences. We demonstrate how atomistic modeling can be used to understand how materials fail under extreme loading, involving unfolding of proteins and propagation of cracks. This course was featured in an MIT Tech Talk article. The objective of this course is to introduce large-scale atomistic modeling techniques and highlight its importance for solving problems in modern engineering sciences. We demonstrate how atomistic modeling can be used to understand how materials fail under extreme loading, involving unfolding of proteins and propagation of cracks. This course was featured in an MIT Tech Talk article.

Subjects

large-scale atomistic | large-scale atomistic | large-scale atomistic modeling techniques | large-scale atomistic modeling techniques | modern engineering sciences | modern engineering sciences | atomistic modeling | atomistic modeling | extreme loading | extreme loading | ductile and brittle materials failure | ductile and brittle materials failure | molecular dynamics | molecular dynamics | simulations | simulations | Cauchy-Born rule | Cauchy-Born rule | biomechanics | biomechanics | biomaterials | biomaterials | copper nanocrystal | copper nanocrystal | nanomechanics | nanomechanics | material mechanics | material mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.800 Tribology (MIT) 2.800 Tribology (MIT)

Description

This course addresses the design of tribological systems: the interfaces between two or more bodies in relative motion. Fundamental topics include: geometric, chemical, and physical characterization of surfaces; friction and wear mechanisms for metals, polymers, and ceramics, including abrasive wear, delamination theory, tool wear, erosive wear, wear of polymers and composites; and boundary lubrication and solid-film lubrication. The course also considers the relationship between nano-tribology and macro-tribology, rolling contacts, tribological problems in magnetic recording and electrical contacts, and monitoring and diagnosis of friction and wear. Case studies are used to illustrate key points. This course addresses the design of tribological systems: the interfaces between two or more bodies in relative motion. Fundamental topics include: geometric, chemical, and physical characterization of surfaces; friction and wear mechanisms for metals, polymers, and ceramics, including abrasive wear, delamination theory, tool wear, erosive wear, wear of polymers and composites; and boundary lubrication and solid-film lubrication. The course also considers the relationship between nano-tribology and macro-tribology, rolling contacts, tribological problems in magnetic recording and electrical contacts, and monitoring and diagnosis of friction and wear. Case studies are used to illustrate key points.

Subjects

tribology | tribology | surfaces | surfaces | interface | interface | friction | friction | wear | wear | metal | metal | polymer | polymer | ceramics | ceramics | abrasive wear | abrasive wear | delamination theory | delamination theory | tool wear | tool wear | erosive wear | erosive wear | composites | composites | boundary lubrication | boundary lubrication | solid-film lubrication. nano-tribology | solid-film lubrication. nano-tribology | macro-tribology | macro-tribology | rolling contacts | rolling contacts | magnetic recording | magnetic recording | electrical contact | electrical contact | connector | connector | axiomatic design | axiomatic design | traction | traction | seals | seals | solid-film lubrication | solid-film lubrication | nano-tribology | nano-tribology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Nano-life: An Introduction to Virus Structure and Assembly (MIT) 7.340 Nano-life: An Introduction to Virus Structure and Assembly (MIT)

Description

Watson and Crick noted that the size of a viral genome was insufficient to encode a protein large enough to encapsidate it and reasoned, therefore that a virus shell must be composed of multiple, but identical subunits. Today, high resolution structures of virus capsids reveal the basis of this genetic economy as a highly symmetrical structure, much like a geodesic dome composed of protein subunits. Crystallographic structures and cryo-electron microscopy reconstructions combined with molecular data are beginning to reveal how these nano-structures are built. Topics covered in the course will include basic principles of virus structure and symmetry, capsid assembly, strategies for enclosing nucleic acid, proteins involved in entry and exit, and the life cycles of well understood pathogens Watson and Crick noted that the size of a viral genome was insufficient to encode a protein large enough to encapsidate it and reasoned, therefore that a virus shell must be composed of multiple, but identical subunits. Today, high resolution structures of virus capsids reveal the basis of this genetic economy as a highly symmetrical structure, much like a geodesic dome composed of protein subunits. Crystallographic structures and cryo-electron microscopy reconstructions combined with molecular data are beginning to reveal how these nano-structures are built. Topics covered in the course will include basic principles of virus structure and symmetry, capsid assembly, strategies for enclosing nucleic acid, proteins involved in entry and exit, and the life cycles of well understood pathogens

Subjects

viruses | viruses | virus structure | virus structure | virus assembly | virus assembly | virus shell | virus shell | virus genome | virus genome | capsids | capsids | capsid assembly | capsid assembly | TEM | TEM | transmission electron microscopy | transmission electron microscopy | nano-life | nano-life | nano-structures | nano-structures | virus symmetry | virus symmetry | icosahedral virus | icosahedral virus | electron cryotomography | electron cryotomography | nucleic acid packaging | nucleic acid packaging

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (MIT) 20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces. This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterials | biomaterial engineering | biomaterial engineering | biotechnology | biotechnology | cell-guiding surface | cell-guiding surface | molecular biomaterials | molecular biomaterials | drug release | drug release | polymers | polymers | pulsatile release | pulsatile release | polymerization | polymerization | polyer erosion | polyer erosion | tissue engineering | tissue engineering | hydrogels | hydrogels | adhesion | adhesion | migration | migration | drug diffusion | drug diffusion | molecular switches | molecular switches | molecular motors | molecular motors | nanoparticles | nanoparticles | microparticles | microparticles | vaccines | vaccines | drug targeting | drug targeting | micro carriers | micro carriers | nano carriers | nano carriers | intracellular drug delivery | intracellular drug delivery | 20.462 | 20.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.982 Bio-Inspired Structures (MIT)

Description

This course is offered for graduate students who are interested in the interdisciplinary study of bio-inspired structures. The intent is to introduce students to newly inspired modern advanced structures and their applications. It aims to link traditional advanced composites to bio-inspired structures and to discuss their generic properties. A link between materials design, strength and structural behavior at different levels (material, element, structural and system levels) is made. For each level, various concepts will be introduced. The importance of structural, dynamic, thermodynamic and kinetic theories related to such processing is highlighted. The pedagogy is based on active learning and a balance of guest lectures and hands-on activities.

Subjects

biomimetics | nanotechnology | smart structures | morphing structures | material properties | nanostructures | self-assembly | structural behavior | nanoparticles | integrative design | bioactive material | nanomanufacturing | smart materials | biosensors | multifunctional materials | bio-inspired structures

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.57 Nano-to-Macro Transport Processes (MIT)

Description

This course provides parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.

Subjects

nanotechnology | nanoscale | transport phenomena | photons | electrons | phonons | energy carriers | energy transport | heat transport | energy levels | statistical behavior | internal energy | waves and particles | scattering | heat generation | Boltzmann equation | classical laws | microtechnology | crystal | lattice | quantum oscillator | laudaurer | nanotube | Louiville equation | X-ray | blackbody | quantum well | Fourier | Newton | Ohm | thermoelectric effect | Brownian motion | surface tension | van der Waals potential. | van der Waals potential

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.978 From Nano to Macro (MIT) 1.978 From Nano to Macro (MIT)

Description

The objective is to introduce large-scale atomistic modeling techniques and motivate its importance for solving problems in modern engineering sciences. We demonstrate how atomistic modeling can be successfully applied to understand how materials fail under extreme loading, emphasizing on the competition between ductile and brittle materials failure. We will demonstrate the techniques in describing failure of a copper nano-crystal. The objective is to introduce large-scale atomistic modeling techniques and motivate its importance for solving problems in modern engineering sciences. We demonstrate how atomistic modeling can be successfully applied to understand how materials fail under extreme loading, emphasizing on the competition between ductile and brittle materials failure. We will demonstrate the techniques in describing failure of a copper nano-crystal.

Subjects

large-scale atomistic modeling techniques | large-scale atomistic modeling techniques | modern engineering sciences | modern engineering sciences | atomistic modeling | atomistic modeling | extreme loading | extreme loading | ductile and brittle materials failure | ductile and brittle materials failure | copper nano-crystal | copper nano-crystal

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.442 Molecular Structure of Biological Materials (MIT) BE.442 Molecular Structure of Biological Materials (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.112 Architecture Design Fundamentals I: Nano-Machines (MIT) 4.112 Architecture Design Fundamentals I: Nano-Machines (MIT)

Description

Includes audio/video content: AV special element video. This is the second undergraduate architecture design studio, which introduces design logic and skills that enable design thinking, representation, and development. Through the lens of nano-scale machines, technologies, and phenomena, students are asked to explore techniques for describing form, space, and architecture. Exercises encourage various connotations of the "machine" and challenge students to translate conceptual strategies into more integrated design propositions through both digital and analog means. Includes audio/video content: AV special element video. This is the second undergraduate architecture design studio, which introduces design logic and skills that enable design thinking, representation, and development. Through the lens of nano-scale machines, technologies, and phenomena, students are asked to explore techniques for describing form, space, and architecture. Exercises encourage various connotations of the "machine" and challenge students to translate conceptual strategies into more integrated design propositions through both digital and analog means.

Subjects

architecture | architecture | architectural design | architectural design | nano-machine | nano-machine | programmable matter | programmable matter | drawing | drawing | scripting | scripting | casting | casting | modeling | modeling | self-assembly | self-assembly | self-replication | self-replication | Processing | Processing | generation | generation | machine | machine | space | space | scale | scale | void | void | bounding box | bounding box | system | system | habitation | habitation | architectural space | architectural space

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies (MIT) 2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies (MIT)

Description

Includes audio/video content: AV lectures. This course introduces principles and technologies for converting heat into electricity via solid-state devices. The first part of the course discusses thermoelectric energy conversion and thermoelectric materials, thermionic energy conversion, and photovoltaics. The second part of the course discusses solar thermal technologies. Various solar heat collection systems will be reviewed, followed by an introduction to the principles of solar thermophotovoltaics and solar thermoelectrics. Spectral control techniques, which are critical for solar thermal systems, will be discussed. Includes audio/video content: AV lectures. This course introduces principles and technologies for converting heat into electricity via solid-state devices. The first part of the course discusses thermoelectric energy conversion and thermoelectric materials, thermionic energy conversion, and photovoltaics. The second part of the course discusses solar thermal technologies. Various solar heat collection systems will be reviewed, followed by an introduction to the principles of solar thermophotovoltaics and solar thermoelectrics. Spectral control techniques, which are critical for solar thermal systems, will be discussed.

Subjects

thermophotovoltaics | thermophotovoltaics | thermoelectric devices | thermoelectric devices | selective surfaces | selective surfaces | nanostructured materials | nanostructured materials | photovoltaic cells | photovoltaic cells | semiconductor physics | semiconductor physics | phonons | phonons | absorption spectrum | absorption spectrum | Seebeck effect | Seebeck effect | thermionic engines | thermionic engines | photonic crystals | photonic crystals | band gap | band gap

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.320 Atomistic Computer Modeling of Materials (SMA 5107) (MIT) 3.320 Atomistic Computer Modeling of Materials (SMA 5107) (MIT)

Description

This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure app This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure app

Subjects

simulation | simulation | computer simulation | computer simulation | atomistic computer simulations | atomistic computer simulations | Density-functional theory | Density-functional theory | DFT | DFT | Hartree-Fock | Hartree-Fock | total-energy pseudopotential | total-energy pseudopotential | thermodynamics | thermodynamics | thermodynamic ensembles | thermodynamic ensembles | quantum mechanics | quantum mechanics | first-principles | first-principles | Monte Carlo sampling | Monte Carlo sampling | molecular dynamics | molecular dynamics | finite temperature | finite temperature | Free energies | Free energies | phase transitions | phase transitions | Coarse-graining | Coarse-graining | mesoscale model | mesoscale model | nanotube | nanotube | alloy | alloy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.23 Electrical, Optical, and Magnetic Properties of Materials (MIT) 3.23 Electrical, Optical, and Magnetic Properties of Materials (MIT)

Description

This class discusses the origin of electrical, magnetic and optical properties of materials, with a focus on the acquisition of quantum mechanical tools. It begins with an analysis of the properties of materials, presentation of the postulates of quantum mechanics, and close examination of the hydrogen atom, simple molecules and bonds, and the behavior of electrons in solids and energy bands. Introducing the variation principle as a method for the calculation of wavefunctions, the course continues with investigation of how and why materials respond to different electrical, magnetic and electromagnetic fields and probes and study of the conductivity, dielectric function, and magnetic permeability in metals, semiconductors, and insulators. A survey of common devices such as transistors, magn This class discusses the origin of electrical, magnetic and optical properties of materials, with a focus on the acquisition of quantum mechanical tools. It begins with an analysis of the properties of materials, presentation of the postulates of quantum mechanics, and close examination of the hydrogen atom, simple molecules and bonds, and the behavior of electrons in solids and energy bands. Introducing the variation principle as a method for the calculation of wavefunctions, the course continues with investigation of how and why materials respond to different electrical, magnetic and electromagnetic fields and probes and study of the conductivity, dielectric function, and magnetic permeability in metals, semiconductors, and insulators. A survey of common devices such as transistors, magn

Subjects

quantum mechanics | quantum mechanics | functional materials | functional materials | magnetic domains | magnetic domains | particle wells | particle wells | spintronics | spintronics | semiconductor engineering | semiconductor engineering | p-n junction | p-n junction | luminescence | luminescence | nanoparticles | nanoparticles | phonons | phonons

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.22 Mechanical Behavior of Materials (MIT) 3.22 Mechanical Behavior of Materials (MIT)

Description

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications. Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications.

Subjects

Phenomenology | Phenomenology | mechanical behavior | mechanical behavior | material structure | material structure | deformation | deformation | failure | failure | elasticity | elasticity | viscoelasticity | viscoelasticity | plasticity | plasticity | creep | creep | fracture | fracture | fatigue | fatigue | metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | thin films | thin films | carbon nanotubes | carbon nanotubes | battery materials | battery materials | superelastic alloys | superelastic alloys | defect nucleation | defect nucleation | student projects | student projects | viral capsides | viral capsides

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.032 Mechanical Behavior of Materials (MIT) 3.032 Mechanical Behavior of Materials (MIT)

Description

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. Integrated laboratories provide the opportunity to explore these concepts through hands-on experiments including instrumentation of pressure vessels, visualization of atomistic deformation in bubble rafts, nanoindentation, and uniaxial mechanical testing, as well as writing assignments to communicate th Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. Integrated laboratories provide the opportunity to explore these concepts through hands-on experiments including instrumentation of pressure vessels, visualization of atomistic deformation in bubble rafts, nanoindentation, and uniaxial mechanical testing, as well as writing assignments to communicate th

Subjects

Basic concepts of solid mechanics and mechanical behavior of materials | Basic concepts of solid mechanics and mechanical behavior of materials | stress-strain relationships | stress-strain relationships | stress transformation | stress transformation | elasticity | elasticity | plasticity and fracture. Case studies include materials selection for bicycle frames | plasticity and fracture. Case studies include materials selection for bicycle frames | stress shielding in biomedical implants; residual stresses in thin films; and ancient materials. Lab experiments and demonstrations give hands-on experience of the physical concepts at a variety of length scales. Use of facilities for measuring mechanical properties including standard mechanical tests | stress shielding in biomedical implants; residual stresses in thin films; and ancient materials. Lab experiments and demonstrations give hands-on experience of the physical concepts at a variety of length scales. Use of facilities for measuring mechanical properties including standard mechanical tests | bubble raft models | bubble raft models | atomic force microscopy and nanoindentation. | atomic force microscopy and nanoindentation. | plasticity and fracture | plasticity and fracture | Case studies | Case studies | materials selection | materials selection | bicycle frames | bicycle frames | stress shielding in biomedical implants | stress shielding in biomedical implants | residual stresses in thin films | residual stresses in thin films | ancient materials | ancient materials | standard mechanical tests | standard mechanical tests | solid mechanics | solid mechanics | mechanical behavior of materials | mechanical behavior of materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.063 Polymer Physics (MIT) 3.063 Polymer Physics (MIT)

Description

This course presents the mechanical, optical, and transport properties of polymers with respect to the underlying physics and physical chemistry of polymers in melt, solution, and solid state. Topics include conformation and molecular dimensions of polymer chains in solutions, melts, blends, and block copolymers; an examination of the structure of glassy, crystalline, and rubbery elastic states of polymers; thermodynamics of polymer solutions, blends, crystallization; liquid crystallinity, microphase separation, and self-assembled organic-inorganic nanocomposites. Case studies include relationships between structure and function in technologically important polymeric systems. This course presents the mechanical, optical, and transport properties of polymers with respect to the underlying physics and physical chemistry of polymers in melt, solution, and solid state. Topics include conformation and molecular dimensions of polymer chains in solutions, melts, blends, and block copolymers; an examination of the structure of glassy, crystalline, and rubbery elastic states of polymers; thermodynamics of polymer solutions, blends, crystallization; liquid crystallinity, microphase separation, and self-assembled organic-inorganic nanocomposites. Case studies include relationships between structure and function in technologically important polymeric systems.

Subjects

mechanical | mechanical | optical | optical | transport | transport | physical chemistry | physical chemistry | chemistry | chemistry | physics | physics | melt | melt | solution | solution | solid | solid | polymer chain | polymer chain | copolymer | copolymer | glass | glass | crystal | crystal | rubber | rubber | elastic | elastic | thermodynamics | thermodynamics | microphase separation | microphase separation | organic | organic | inorganic | inorganic | nanocomposite | nanocomposite

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Biomaterials Chemistry (MIT) Biomaterials Chemistry (MIT)

Description

This course covers principles of materials chemistry common to organic materials ranging from biological polypeptides to engineered block copolymers. Topics include molecular structure, polymer synthesis reactions, protein-protein interactions, multifunctional organic materials including polymeric nanoreactors, conducting polymers and virus-mediated biomineralization. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the ma This course covers principles of materials chemistry common to organic materials ranging from biological polypeptides to engineered block copolymers. Topics include molecular structure, polymer synthesis reactions, protein-protein interactions, multifunctional organic materials including polymeric nanoreactors, conducting polymers and virus-mediated biomineralization. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the ma

Subjects

polymeric nanoreactors | polymeric nanoreactors | virus-mediated biomineralization | virus-mediated biomineralization | conducting polymers | conducting polymers | biomaterials chemistry | biomaterials chemistry | organic materials | organic materials | polypeptides | polypeptides | block copolymers | block copolymers | polymer synthesis | polymer synthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata