Searching for network security : 8 results found | RSS Feed for this search

Coding Techniques Coding Techniques

Description

The objective of this course is to give an overview of different cipher and security techniques as well as their applications to computer networks and telematic services. The student will have to know both symmetric and asymmetric encryption techniques, hash functions, cryptographic checksums, authentication protocols, digital signature, digital certificates and applications of all of them. The objective of this course is to give an overview of different cipher and security techniques as well as their applications to computer networks and telematic services. The student will have to know both symmetric and asymmetric encryption techniques, hash functions, cryptographic checksums, authentication protocols, digital signature, digital certificates and applications of all of them.

Subjects

network security | network security | cryptography | cryptography | ía de Telecomunicación | ía de Telecomunicación | security protocols | security protocols | security services | security services | 2010 | 2010 | ía Telemática | ía Telemática

License

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/

Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.829 Computer Networks (MIT) 6.829 Computer Networks (MIT)

Description

How does the global network infrastructure work and what are the design principles on which it is based? In what ways are these design principles compromised in practice? How do we make it work better in today's world? How do we ensure that it will work well in the future in the face of rapidly growing scale and heterogeneity? And how should Internet applications be written, so they can obtain the best possible performance both for themselves and for others using the infrastructure? These are some issues that are grappled with in this course. The course will focus on the design, implementation, analysis, and evaluation of large-scale networked systems. Topics include internetworking philosophies, unicast and multicast routing, congestion control, network quality of service, mobile n How does the global network infrastructure work and what are the design principles on which it is based? In what ways are these design principles compromised in practice? How do we make it work better in today's world? How do we ensure that it will work well in the future in the face of rapidly growing scale and heterogeneity? And how should Internet applications be written, so they can obtain the best possible performance both for themselves and for others using the infrastructure? These are some issues that are grappled with in this course. The course will focus on the design, implementation, analysis, and evaluation of large-scale networked systems. Topics include internetworking philosophies, unicast and multicast routing, congestion control, network quality of service, mobile n

Subjects

computer | computer | network | network | internetworking | internetworking | unicast | unicast | multicast | multicast | routing | routing | congestion control | congestion control | quality of service | quality of service | mobile networking | mobile networking | router architectures | router architectures | network-aware applications | network-aware applications | content dissemination systems | content dissemination systems | network security | network security

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT) 6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment. 6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | network | computer security | computer security | security | security | cryptography | cryptography | secret-key | secret-key | public-key | public-key | digital signature | digital signature | authentication | authentication | identification | identification | intrusion detection | intrusion detection | virus | virus | operating system | operating system | software | software | protection | protection | electronic mail | electronic mail | email | email | electronic commerce | electronic commerce | electronic cash | electronic cash | firewall | firewall | computer | computer | digital | digital | signature | signature | electronic | electronic | cash | cash | commerce | commerce | mail | mail | operating | operating | system | system | intrustion | intrustion | detection | detection | distributed | distributed | physical | physical | discretionary | discretionary | mandatory | mandatory | access | access | control | control | biometrics | biometrics | information | information | flow | flow | models | models | covert | covert | channels | channels | integrity | integrity | logic | logic | voting | voting | risk | risk | assessment | assessment | secure | secure | web | web | browsers | browsers | architecture | architecture | engineering | engineering | certificates | certificates | multi-user computer systems | multi-user computer systems | distributed computer systems | distributed computer systems | physical security | physical security | discretionary access control | discretionary access control | mandatory access control | mandatory access control | information-flow models | information-flow models | covert channels | covert channels | integrity models | integrity models | elementary cryptography | elementary cryptography | authentication logic;electronic cash | authentication logic;electronic cash | viruses | viruses | firewalls | firewalls | electronic voting | electronic voting | risk assessment | risk assessment | secure web browsers | secure web browsers | network security | network security | architecture engineering | architecture engineering | digital signatures | digital signatures | authentication schemes | authentication schemes | identification schemes | identification schemes | formal models | formal models | secure operating systems | secure operating systems | software protection | software protection | electronic mail security | electronic mail security | World Wide Web | World Wide Web | ecommerce | ecommerce | email security | email security | www | www | payment protocols | payment protocols | authentication logic | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | computer security | security | cryptography | secret-key | public-key | digital signature | authentication | identification | intrusion detection | virus | operating system | software | protection | electronic mail | email | electronic commerce | electronic cash | firewall | computer | digital | signature | electronic | cash | commerce | mail | operating | system | intrustion | detection | distributed | physical | discretionary | mandatory | access | control | biometrics | information | flow | models | covert | channels | integrity | logic | voting | risk | assessment | secure | web | browsers | architecture | engineering | certificates | multi-user computer systems | distributed computer systems | physical security | discretionary access control | mandatory access control | information-flow models | covert channels | integrity models | elementary cryptography | authentication logic;electronic cash | viruses | firewalls | electronic voting | risk assessment | secure web browsers | network security | architecture engineering | digital signatures | authentication schemes | identification schemes | formal models | secure operating systems | software protection | electronic mail security | World Wide Web | ecommerce | email security | www | payment protocols | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | computer security | security | cryptography | secret-key | public-key | digital signature | authentication | identification | intrusion detection | virus | operating system | software | protection | electronic mail | email | electronic commerce | electronic cash | firewall | computer | digital | signature | electronic | cash | commerce | mail | operating | system | intrustion | detection | distributed | physical | discretionary | mandatory | access | control | biometrics | information | flow | models | covert | channels | integrity | logic | voting | risk | assessment | secure | web | browsers | architecture | engineering | certificates | multi-user computer systems | distributed computer systems | physical security | discretionary access control | mandatory access control | information-flow models | covert channels | integrity models | elementary cryptography | authentication logic;electronic cash | viruses | firewalls | electronic voting | risk assessment | secure web browsers | network security | architecture engineering | digital signatures | authentication schemes | identification schemes | formal models | secure operating systems | software protection | electronic mail security | World Wide Web | ecommerce | email security | www | payment protocols | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.829 Computer Networks (MIT)

Description

How does the global network infrastructure work and what are the design principles on which it is based? In what ways are these design principles compromised in practice? How do we make it work better in today's world? How do we ensure that it will work well in the future in the face of rapidly growing scale and heterogeneity? And how should Internet applications be written, so they can obtain the best possible performance both for themselves and for others using the infrastructure? These are some issues that are grappled with in this course. The course will focus on the design, implementation, analysis, and evaluation of large-scale networked systems. Topics include internetworking philosophies, unicast and multicast routing, congestion control, network quality of service, mobile n

Subjects

computer | network | internetworking | unicast | multicast | routing | congestion control | quality of service | mobile networking | router architectures | network-aware applications | content dissemination systems | network security

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | computer security | security | cryptography | secret-key | public-key | digital signature | authentication | identification | intrusion detection | virus | operating system | software | protection | electronic mail | email | electronic commerce | electronic cash | firewall | computer | digital | signature | electronic | cash | commerce | mail | operating | system | intrustion | detection | distributed | physical | discretionary | mandatory | access | control | biometrics | information | flow | models | covert | channels | integrity | logic | voting | risk | assessment | secure | web | browsers | architecture | engineering | certificates | multi-user computer systems | distributed computer systems | physical security | discretionary access control | mandatory access control | information-flow models | covert channels | integrity models | elementary cryptography | authentication logic;electronic cash | viruses | firewalls | electronic voting | risk assessment | secure web browsers | network security | architecture engineering | digital signatures | authentication schemes | identification schemes | formal models | secure operating systems | software protection | electronic mail security | World Wide Web | ecommerce | email security | www | payment protocols | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.829 Computer Networks (MIT)

Description

How does the global network infrastructure work and what are the design principles on which it is based? In what ways are these design principles compromised in practice? How do we make it work better in today's world? How do we ensure that it will work well in the future in the face of rapidly growing scale and heterogeneity? And how should Internet applications be written, so they can obtain the best possible performance both for themselves and for others using the infrastructure? These are some issues that are grappled with in this course. The course will focus on the design, implementation, analysis, and evaluation of large-scale networked systems. Topics include internetworking philosophies, unicast and multicast routing, congestion control, network quality of service, mobile n

Subjects

computer | network | internetworking | unicast | multicast | routing | congestion control | quality of service | mobile networking | router architectures | network-aware applications | content dissemination systems | network security

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata