Searching for networks : 352 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14

14.15J Networks (MIT) 14.15J Networks (MIT)

Description

Networks are ubiquitous in our modern society. The World Wide Web that links us to and enables information flows with the rest of the world is the most visible example. It is, however, only one of many networks within which we are situated. Our social life is organized around networks of friends and colleagues. These networks determine our information, influence our opinions, and shape our political attitudes. They also link us, often through important but weak ties, to everybody else in the United States and in the world. Economic and financial markets also look much more like networks than anonymous marketplaces. Firms interact with the same suppliers and customers and use Web-like supply chains. Financial linkages, both among banks and between consumers, companies and banks, also form a Networks are ubiquitous in our modern society. The World Wide Web that links us to and enables information flows with the rest of the world is the most visible example. It is, however, only one of many networks within which we are situated. Our social life is organized around networks of friends and colleagues. These networks determine our information, influence our opinions, and shape our political attitudes. They also link us, often through important but weak ties, to everybody else in the United States and in the world. Economic and financial markets also look much more like networks than anonymous marketplaces. Firms interact with the same suppliers and customers and use Web-like supply chains. Financial linkages, both among banks and between consumers, companies and banks, also form a

Subjects

networks | networks | crowds | crowds | markets | markets | highly connected world | highly connected world | social networks | social networks | economic networks | economic networks | power networks | power networks | communication networks | communication networks | game theory | game theory | graph theory | graph theory | branching processes | branching processes | random graph models | random graph models | rich get richer phenomena | rich get richer phenomena | power laws | power laws | small worlds | small worlds | Erd?s-Renyi graphs | Erd?s-Renyi graphs | degree distributions | degree distributions | phase transitions | phase transitions | connectedness | connectedness | and giant component | and giant component | link analysis | link analysis | web search | web search | navigation | navigation | decentralized search | decentralized search | preferential attachment | preferential attachment | epidemics | epidemics | diffusion through networks | diffusion through networks | SIR | SIR | (susceptible | (susceptible | infected | infected | removed) | removed) | SIS | SIS | susceptible) | susceptible) | strategies | strategies | payoffs | payoffs | normal forms | normal forms | Nash equilibrium | Nash equilibrium | traffic networks | traffic networks | negative externalities | negative externalities | Braess' paradox | Braess' paradox | potential games | potential games | myopic behavior | myopic behavior | fictitious play | fictitious play | repeated games | repeated games | prisoner's dilemma | prisoner's dilemma | cooperation | cooperation | perfect information | perfect information | imperfect information | imperfect information | positive externalities | positive externalities | strategic complements | strategic complements | path dependence | path dependence | diffusion of innovation | diffusion of innovation | contagion pheonomena | contagion pheonomena | Bayes's rule | Bayes's rule | Bayesian Nash equilibrium | Bayesian Nash equilibrium | first price auctions | first price auctions | second price auctions | second price auctions | social learning | social learning | Bayesian learning | Bayesian learning | copying | copying | herding | herding | herd behavior | herd behavior | informational cascades | informational cascades | decisions | decisions | social choice | social choice | Condorcet jury theorem | Condorcet jury theorem | political economy | political economy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Readme file for Introduction to Artificial Intelligence

Description

This readme file contains details of links to all the Introduction to Artificial Intelligence module's material held on Jorum and information about the module as well.

Subjects

ukoer | evolutionary algorithm lecture | algorithm tutorial | genetic algorithm lecture | genetic algorithm example | evolutionary computation tutorial | artificial intelligence lecture | artificial intelligence tutorial | random processes reading material | semantic web reading material | neural networks video | evolutionary computation test | artificial intelligence test | knowledge representation test | neural networks test | evolutionary algorithm | genetic computation | genetic programming | evolutionary computation | artificial intelligence | introduction to artificial intelligence | search | problem solving | revision | knowledge representation | semantic web | neural network | neural networks | artificial neural networks | swarm intelligence | collective intelligence | robot societies | genetic computation lecture | genetic programming lecture | evolutionary computation lecture | introduction to artificial intelligence lecture | evolutionary algorithm tutorial | genetic computation tutorial | genetic programming tutorial | introduction to artificial intelligence tutorial | evolutionary algorithm example | genetic computation example | genetic programming example | evolutionary computation example | artificial intelligence example | introduction to artificial intelligence example | search lecture | problem solving lecture | search tutorial | problem solving tutorial | search example | problem solving example | revision reading material | search reading material | artificial intelligence reading material | introduction to artificial intelligence reading material | revision lecture | knowledge representation lecture | semantic web lecture | knowledge representation practical | semantic web practical | artificial intelligence practical | introduction to artificial intelligence practical | knowledge representation reading material | knowledge representation notes | semantic web notes | artificial intelligence notes | introduction to artificial intelligence notes | neural network lecture | neural networks lecture | artificial neural networks lecture | neural network reading material | neural networks reading material | artificial neural networks reading material | neural network practical | neural networks practical | artificial neural networks practical | neural network viewing material | neural networks viewing material | artificial neural networks viewing material | artificial intelligence viewing material | introduction to artificial intelligence viewing material | swarm intelligence lecture | collective intelligence lecture | robot societies lecture | swarm intelligence tutorial | collective intelligence tutorial | robot societies tutorial | evolutionary algorithm test | genetic computation test | genetic programming test | introduction to artificial intelligence test | search test | problem solving test | semantic web test | neural network test | artificial neural networks test | g700 | ai | g700 lecture | ai lecture | g700 tutorial | ai tutorial | g700 example | ai example | g700 reading material | ai reading material | g700 practical | ai practical | g700 notes | ai notes | g700 viewing material | ai viewing material | g700 test | ai test | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.15J Networks (MIT)

Description

Networks are ubiquitous in our modern society. The World Wide Web that links us to and enables information flows with the rest of the world is the most visible example. It is, however, only one of many networks within which we are situated. Our social life is organized around networks of friends and colleagues. These networks determine our information, influence our opinions, and shape our political attitudes. They also link us, often through important but weak ties, to everybody else in the United States and in the world. Economic and financial markets also look much more like networks than anonymous marketplaces. Firms interact with the same suppliers and customers and use Web-like supply chains. Financial linkages, both among banks and between consumers, companies and banks, also form a

Subjects

networks | crowds | markets | highly connected world | social networks | economic networks | power networks | communication networks | game theory | graph theory | branching processes | random graph models | rich get richer phenomena | power laws | small worlds | Erd?s-Renyi graphs | degree distributions | phase transitions | connectedness | and giant component | link analysis | web search | navigation | decentralized search | preferential attachment | epidemics | diffusion through networks | SIR | (susceptible | infected | removed) | SIS | susceptible) | strategies | payoffs | normal forms | Nash equilibrium | traffic networks | negative externalities | Braess' paradox | potential games | myopic behavior | fictitious play | repeated games | prisoner's dilemma | cooperation | perfect information | imperfect information | positive externalities | strategic complements | path dependence | diffusion of innovation | contagion pheonomena | Bayes's rule | Bayesian Nash equilibrium | first price auctions | second price auctions | social learning | Bayesian learning | copying | herding | herd behavior | informational cascades | decisions | social choice | Condorcet jury theorem | political economy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.896 Theory of Parallel Hardware (SMA 5511) (MIT) 6.896 Theory of Parallel Hardware (SMA 5511) (MIT)

Description

6.896 covers mathematical foundations of parallel hardware, from computer arithmetic to physical design, focusing on algorithmic underpinnings. Topics covered include: arithmetic circuits, parallel prefix, systolic arrays, retiming, clocking methodologies, boolean logic, sorting networks, interconnection networks, hypercubic networks, P-completeness, VLSI layout theory, reconfigurable wiring, fat-trees, and area-time complexity. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5511 (Theory of Parallel Hardware). 6.896 covers mathematical foundations of parallel hardware, from computer arithmetic to physical design, focusing on algorithmic underpinnings. Topics covered include: arithmetic circuits, parallel prefix, systolic arrays, retiming, clocking methodologies, boolean logic, sorting networks, interconnection networks, hypercubic networks, P-completeness, VLSI layout theory, reconfigurable wiring, fat-trees, and area-time complexity. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5511 (Theory of Parallel Hardware).

Subjects

parallel hardware | parallel hardware | computer arithmetic | computer arithmetic | physical design | physical design | algorithms | algorithms | arithmetic circuits | arithmetic circuits | parallel prefix | parallel prefix | systolic arrays | systolic arrays | retiming | retiming | clocking methodologies | clocking methodologies | boolean logic | boolean logic | sorting networks | sorting networks | interconnection networks | interconnection networks | hypercubic networks | hypercubic networks | P-completeness | P-completeness | VLSI layout theory | VLSI layout theory | reconfigurable wiring | reconfigurable wiring | fat-trees | fat-trees | area-time complexity | area-time complexity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.591J Systems Biology (MIT) 8.591J Systems Biology (MIT)

Description

This course introduces the mathematical modeling techniques needed to address key questions in modern biology. An overview of modeling techniques in molecular biology and genetics, cell biology and developmental biology is covered. Key experiments that validate mathematical models are also discussed, as well as molecular, cellular, and developmental systems biology, bacterial chemotaxis, genetic oscillators, control theory and genetic networks, and gradient sensing systems. Additional specific topics include: constructing and modeling of genetic networks, lambda phage as a genetic switch, synthetic genetic switches, circadian rhythms, reaction diffusion equations, local activation and global inhibition models, center finding networks, general pattern formation models, modeling cell-cell co This course introduces the mathematical modeling techniques needed to address key questions in modern biology. An overview of modeling techniques in molecular biology and genetics, cell biology and developmental biology is covered. Key experiments that validate mathematical models are also discussed, as well as molecular, cellular, and developmental systems biology, bacterial chemotaxis, genetic oscillators, control theory and genetic networks, and gradient sensing systems. Additional specific topics include: constructing and modeling of genetic networks, lambda phage as a genetic switch, synthetic genetic switches, circadian rhythms, reaction diffusion equations, local activation and global inhibition models, center finding networks, general pattern formation models, modeling cell-cell co

Subjects

molecular systems biology | molecular systems biology | constructing and modeling of genetic networks | constructing and modeling of genetic networks | control theory and genetic networks | control theory and genetic networks | ambda phage as a genetic switch | ambda phage as a genetic switch | synthetic genetic switches | synthetic genetic switches | bacterial chemotaxis | bacterial chemotaxis | genetic oscillators | genetic oscillators | circadian rhythms | circadian rhythms | cellular systems biology | cellular systems biology | reaction diffusion equations | reaction diffusion equations | local activation and global inhibition models | local activation and global inhibition models | gradient sensing systems | gradient sensing systems | center finding networks | center finding networks | developmental systems biology | developmental systems biology | general pattern formation models | general pattern formation models | modeling cell-cell communication | modeling cell-cell communication | quorum sensing | quorum sensing | models for Drosophilia development | models for Drosophilia development | 8.591 | 8.591 | 7.81 | 7.81

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.564 Information Technology I (MIT) 15.564 Information Technology I (MIT)

Description

Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed. Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed.

Subjects

developing-country governments; international | developing-country governments; international | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers | computers | future developments | future developments | networks | networks | distributed computing | distributed computing | programming languages | programming languages | firewall | firewall | e-business | e-business | computer architecture | computer architecture | operating | operating | software development | software development | database | database | user interface | user interface | telecommunication | telecommunication | data transmission | data transmission | local area network | local area network | wireless network | wireless network | internet | internet | world wide web | world wide web | digital security | digital security | architecture | architecture | data | data | transmission | transmission | wireless | wireless | interface | interface | user | user | software | software | development | development | programming | programming | languages | languages | distributed | distributed | computing | computing | LAN | LAN | local | local | area | area | future | future | digital | digital | security | security | technology | technology | information | information | management | management | systems | systems | relational | relational | graphical | graphical | interfaces | interfaces | client/server | client/server | enterprise | enterprise | applications | applications | cryptography | cryptography | services | services | Microsoft | Microsoft | Access | Access | Lotus Notes | Lotus Notes | processing | processing | memory | memory | I/O | I/O | CPU | CPU | OS | OS | hardware | hardware | compression | compression | SQL | SQL | queries | queries | design | design | WAN | WAN | wide | wide | Ethernet | Ethernet | packet-switched | packet-switched | peer-to-peer | peer-to-peer | WWW | WWW | public | public | key | key | mining | mining | warehousing | warehousing | concepts | concepts | conceptual | conceptual | modern computing | modern computing | information management | information management | operating systems | operating systems | relational database systems | relational database systems | graphical user interfaces | graphical user interfaces | client/server systems | client/server systems | enterprise applications | enterprise applications | web.internet services | web.internet services | Microsoft Access | Microsoft Access | database management systems | database management systems | information technology | information technology | telecommunications | telecommunications | eBusiness applications | eBusiness applications | client | client | servers | servers | wireless area network | wireless area network

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

MAS.961 Networks, Complexity and Its Applications (MIT) MAS.961 Networks, Complexity and Its Applications (MIT)

Description

Networks are a ubiquitous way to represent complex systems, including those in the social and economic sciences. The goal of the course is to equip students with conceptual tools that can help them understand complex systems that emerge in both nature and social systems. This is a course intended for a general audience and will discuss applications of networks and complexity to diverse systems, including epidemic spreading, social networks and the evolution of economic development. Networks are a ubiquitous way to represent complex systems, including those in the social and economic sciences. The goal of the course is to equip students with conceptual tools that can help them understand complex systems that emerge in both nature and social systems. This is a course intended for a general audience and will discuss applications of networks and complexity to diverse systems, including epidemic spreading, social networks and the evolution of economic development.

Subjects

social networks | social networks | complex networks | complex networks | macroconnections | macroconnections | Watts and Strogatz Model | Watts and Strogatz Model | Barabási-Albert Model | Barabási-Albert Model | Modularity and Community Structure | Modularity and Community Structure | The Lorenz Attractor | The Lorenz Attractor | Lyapunov Exponents | Lyapunov Exponents | visualizing networks | visualizing networks | network structure | network structure

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Introduction to Artificial Intelligence - Neural Networks

Description

This viewing material forms part of the "Neural Networks" topic in the Introduction to Artificial Intelligence module.

Subjects

ukoer | neural networks video | neural network | neural networks | artificial neural networks | artificial intelligence | introduction to artificial intelligence | neural network viewing material | neural networks viewing material | artificial neural networks viewing material | artificial intelligence viewing material | introduction to artificial intelligence viewing material | g700 | ai | g700 viewing material | ai viewing material | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Computational Perspectives on the Structure and Information Flows in Online Networks

Description

In this talk, Jure discusses how the computational perspective can be applied to questions involving the structure of online networks and the dynamics of information that flow through such networks. With an increasing amount of social interaction taking place online, we are accumulating large amounts of data about phenomena that were once essentially invisible to us: the collective behaviour and social interactions of hundreds of millions of people. Analyzing this data computationally offers enormous potential to address both long-standing scientific questions, and to harness and inform the design of future social computing applications.

Subjects

Internet | social interaction | data | Web 2.0 | collective action | social behaviour | machine | computation | analysis | information | networks | social networks | structure | information flow | big data | ukoer | Internet | social interaction | data | Web 2.0 | collective action | social behaviour | machine | computation | analysis | data | information | networks | social networks | structure | information flow | big data

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://rss.oucs.ox.ac.uk/internet/all-audio/rss20.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Computational Perspectives on the Structure and Information Flows in Online Networks

Description

In this talk, Jure Leskovec discusses how the computational perspective can be applied to questions involving the structure of online networks and the dynamics of information that flow through such networks. With an increasing amount of social interaction taking place online, we are accumulating large amounts of data about phenomena that were once essentially invisible to us: the collective behaviour and social interactions of hundreds of millions of people. Analyzing this data computationally offers enormous potential to address both long-standing scientific questions, and to harness and inform the design of future social computing applications.

Subjects

Internet | social interaction | data | Web 2.0 | collective action | social behaviour | machine | computation | analysis | information | networks | social networks | structure | information flow | big data | ukoer | Internet | social interaction | data | Web 2.0 | collective action | social behaviour | machine | computation | analysis | data | information | networks | social networks | structure | information flow | big data

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://rss.oucs.ox.ac.uk/internet/all-video/rss20.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The use of citizen journalism by traditional media The use of citizen journalism by traditional media

Description

Seminar delivered by Nic Newman, former Future Media Controller, BBC and visiting fellow at the Reuters Institute for the Study of Journalism. Nicola Bruno writes: 'To be social or not to be social?' According to Nic Newman, RISJ Visiting Fellow and a digital media consultant, that is no longer the question for mainstream media outlets facing the transition to the digital landscape. During his seminar at the RISJ on 'The use of citizen journalism by traditional media', Nic Newman explained to the audience that in the last two years all media organizations have embraced user-generated and social media tools. After watching with suspicion (and sometimes also with haughtiness) the rise of citizen journalism, mainstream media outlets have become more and more aware that digital networks Seminar delivered by Nic Newman, former Future Media Controller, BBC and visiting fellow at the Reuters Institute for the Study of Journalism. Nicola Bruno writes: 'To be social or not to be social?' According to Nic Newman, RISJ Visiting Fellow and a digital media consultant, that is no longer the question for mainstream media outlets facing the transition to the digital landscape. During his seminar at the RISJ on 'The use of citizen journalism by traditional media', Nic Newman explained to the audience that in the last two years all media organizations have embraced user-generated and social media tools. After watching with suspicion (and sometimes also with haughtiness) the rise of citizen journalism, mainstream media outlets have become more and more aware that digital networks

Subjects

traditional | traditional | mainstream | mainstream | readers | readers | media | media | social | social | journalism | journalism | newman | newman | digital | digital | citizen | citizen | content | content | tools | tools | networks | networks | people | people | traditional | mainstream | readers | media | social | journalism | newman | digital | citizen | content | tools | networks | people | 2010-10-20 | traditional | mainstream | readers | media | social | journalism | newman | digital | citizen | content | tools | networks | people | 2010-10-20

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129029/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.867 Machine Learning (MIT) 6.867 Machine Learning (MIT)

Description

6.867 is an introductory course on machine learning which provides an overview of many techniques and algorithms in machine learning, beginning with topics such as simple perceptrons and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course gives the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how and why they work. The underlying theme in the course is statistical inference as this provides the foundation for most of the methods covered.  6.867 is an introductory course on machine learning which provides an overview of many techniques and algorithms in machine learning, beginning with topics such as simple perceptrons and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course gives the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how and why they work. The underlying theme in the course is statistical inference as this provides the foundation for most of the methods covered. 

Subjects

machine learning | machine learning | perceptrons | perceptrons | boosting | boosting | support vector machines | support vector machines | Markov | Markov | hidden Markov models | hidden Markov models | HMM | HMM | Bayesian networks | Bayesian networks | statistical inference | statistical inference | regression | regression | clustering | clustering | bias | bias | variance | variance | regularization | regularization | Generalized Linear Models | Generalized Linear Models | neural networks | neural networks | Support Vector Machine | Support Vector Machine | SVM | SVM | mixture models | mixture models | kernel density estimation | kernel density estimation | gradient descent | gradient descent | quadratic programming | quadratic programming | EM algorithm | EM algorithm | orward-backward algorithm | orward-backward algorithm | junction tree algorithm | junction tree algorithm | Gibbs sampling | Gibbs sampling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.592 Statistical Physics in Biology (MIT) 8.592 Statistical Physics in Biology (MIT)

Description

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; Considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.Technical RequirementsAny number of biological sequence comparison software tools can be used to import the .fna files found on this course site. Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; Considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.Technical RequirementsAny number of biological sequence comparison software tools can be used to import the .fna files found on this course site.

Subjects

Bioinformatics | Bioinformatics | DNA | DNA | gene finding | gene finding | sequence comparison | sequence comparison | phylogenetic trees | phylogenetic trees | biopolymers | biopolymers | DNA double helix | DNA double helix | secondary structure of RNA | secondary structure of RNA | protein folding | protein folding | protein motors | membranes | protein motors | membranes | cellular networks | cellular networks | neural networks | neural networks | evolution | evolution | statistical physics | statistical physics | molecular biology | molecular biology | deoxyribonucleic acid | deoxyribonucleic acid | genes | genes | genetics | genetics | gene sequencing | gene sequencing | phylogenetics | phylogenetics | double helix | double helix | RNA | RNA | ribonucleic acid | ribonucleic acid | force | force | motion | motion | packaging | packaging | protein motors | protein motors | membranes | membranes | biochemistry | biochemistry | genome | genome | optimization | optimization | partitioning | partitioning | pattern recognition | pattern recognition | collective behavior | collective behavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The persistence of identity in the digital age: Living in social networks on and offline

Description

Social networks are now culturally bound to online software such as Facebook and Twitter, with a trend in personal persistent content. Bernie Hogan will review new empirical research on social networks and conclude with advice on future online policy. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

twitter | facebook | social networks | networks | identity | alumni weekend | twitter | facebook | social networks | networks | identity | alumni weekend | 2011-09-17

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129169/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The persistence of identity in the digital age: Living in social networks on and offline

Description

Social networks are now culturally bound to online software such as Facebook and Twitter, with a trend in personal persistent content. Bernie Hogan will review new empirical research on social networks and conclude with advice on future online policy. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

twitter | facebook | social networks | networks | identity | alumni weekend | twitter | facebook | social networks | networks | identity | alumni weekend | 2011-09-17

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129169/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

Includes audio/video content: AV lectures. 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Poin Includes audio/video content: AV lectures. 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS. The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Poin

Subjects

Fundamentals of the lumped circuit abstraction | Fundamentals of the lumped circuit abstraction | Resistive elements and networks | Resistive elements and networks | independent and dependent sources | independent and dependent sources | switches and MOS devices | switches and MOS devices | digital abstraction | digital abstraction | amplifiers | amplifiers | and energy storage elements | and energy storage elements | Dynamics of first- and second-order networks | Dynamics of first- and second-order networks | design in the time and frequency domains | design in the time and frequency domains | analog and digital circuits and applications | analog and digital circuits and applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.225J Transportation Flow Systems (MIT) 1.225J Transportation Flow Systems (MIT)

Description

Design, operation, and management of traffic flows over complex transportation networks are the foci of this course. It covers two major topics: traffic flow modeling and traffic flow operations. Sub-topics include deterministic and probabilistic models, elements of queuing theory, and traffic assignment. Concepts are illustrated through various applications and case studies. This is a half-term subject offered during the second half of the semester. Design, operation, and management of traffic flows over complex transportation networks are the foci of this course. It covers two major topics: traffic flow modeling and traffic flow operations. Sub-topics include deterministic and probabilistic models, elements of queuing theory, and traffic assignment. Concepts are illustrated through various applications and case studies. This is a half-term subject offered during the second half of the semester.

Subjects

transportation | transportation | transportation flow systems | transportation flow systems | traffic | traffic | traffic flow | traffic flow | networks | networks | transportation networks | transportation networks | flow modeling | flow modeling | flow operations | flow operations | deteministic models | deteministic models | probabilistic models | probabilistic models | queuing theory | queuing theory | queues | queues | traffic assignment | traffic assignment | case studies | case studies | cumulative plots | cumulative plots | airport runway capacity | airport runway capacity | runway capacity | runway capacity | road traffic | road traffic | shortest paths | shortest paths | optimizations | optimizations | highway control | highway control | ramp metering | ramp metering | simulation models | simulation models | isolated signals | isolated signals | operations | operations | operational problems | operational problems | air traffic operation | air traffic operation | air | air | road | road | component | component | 1.225 | 1.225 | ESD.205 | ESD.205

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.263J Data Communication Networks (MIT) 6.263J Data Communication Networks (MIT)

Description

6.263J / 16.37J focuses on the fundamentals of data communication networks. One goal is to give some insight into the rationale of why networks are structured the way they are today and to understand the issues facing the designers of next-generation data networks. Much of the course focuses on network algorithms and their performance. Students are expected to have a strong mathematical background and an understanding of probability theory. Topics discussed include: layered network architecture, Link Layer protocols, high-speed packet switching, queueing theory, Local Area Networks, and Wide Area Networking issues, including routing and flow control. 6.263J / 16.37J focuses on the fundamentals of data communication networks. One goal is to give some insight into the rationale of why networks are structured the way they are today and to understand the issues facing the designers of next-generation data networks. Much of the course focuses on network algorithms and their performance. Students are expected to have a strong mathematical background and an understanding of probability theory. Topics discussed include: layered network architecture, Link Layer protocols, high-speed packet switching, queueing theory, Local Area Networks, and Wide Area Networking issues, including routing and flow control.

Subjects

data communication networks | data communication networks | architecture | architecture | network performance | network performance | network operation | network operation | next generation data networks | next generation data networks | network algorithms | network algorithms | mathematics | mathematics | probability theory | probability theory | layered network architecture | layered network architecture | Link Layer protocols | Link Layer protocols | high-speed packet switching | high-speed packet switching | queueing theory | queueing theory | Local Area Networks | Local Area Networks | Wide Area Networks | Wide Area Networks | 6.263 | 6.263 | 16.37 | 16.37

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Systems Biology: Stochastic Processes and Biological Robustness (MIT) 7.342 Systems Biology: Stochastic Processes and Biological Robustness (MIT)

Description

In this seminar, we will discuss some of the main themes that have arisen in the field of systems biology, including the concepts of robustness, stochastic cell-to-cell variability, and the evolution of molecular interactions within complex networks. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching. In this seminar, we will discuss some of the main themes that have arisen in the field of systems biology, including the concepts of robustness, stochastic cell-to-cell variability, and the evolution of molecular interactions within complex networks. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subjects

systems biology | systems biology | synthetic networks | synthetic networks | noise | noise | gene expression | gene expression | oscillators | oscillators | PCR | PCR | stochastic | stochastic | robustness | robustness | biological networks | biological networks | chemotaxis | chemotaxis | circadian | circadian

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.349 Biological Computing: At the Crossroads of Engineering and Science (MIT) 7.349 Biological Computing: At the Crossroads of Engineering and Science (MIT)

Description

Imagine you are a salesman needing to visit 100 cities connected by a set of roads. Can you do it while stopping in each city only once? Even a supercomputer working at 1 trillion operations per second would take longer than the age of the universe to find a solution when considering each possibility in turn. In 1994, Leonard Adleman published a paper in which he described a solution, using the tools of molecular biology, for a smaller 7-city example of this problem. His paper generated enormous scientific and public interest, and kick-started the field of Biological Computing, the main subject of this discussion based seminar course. Students will analyze the Adleman paper, and the papers that preceded and followed it, with an eye for identifying the engineering and scientific aspects of Imagine you are a salesman needing to visit 100 cities connected by a set of roads. Can you do it while stopping in each city only once? Even a supercomputer working at 1 trillion operations per second would take longer than the age of the universe to find a solution when considering each possibility in turn. In 1994, Leonard Adleman published a paper in which he described a solution, using the tools of molecular biology, for a smaller 7-city example of this problem. His paper generated enormous scientific and public interest, and kick-started the field of Biological Computing, the main subject of this discussion based seminar course. Students will analyze the Adleman paper, and the papers that preceded and followed it, with an eye for identifying the engineering and scientific aspects of

Subjects

biological computing | biological computing | Leonard Adleman | Leonard Adleman | exquisite detection | exquisite detection | whole-cell computing | whole-cell computing | computation | computation | molecular biology | molecular biology | biotin-avidin | biotin-avidin | magnetic beads | magnetic beads | cellular processes | cellular processes | combinatorial problems | combinatorial problems | self-assembly | self-assembly | nanodevices | nanodevices | molecular machines | molecular machines | quorum sensing | quorum sensing | molecular switches | molecular switches | ciliates | ciliates | molecular gates | molecular gates | molecular circuits | molecular circuits | genetic switch | genetic switch | cellular networks | cellular networks | genetic networks | genetic networks | genetic circuits | genetic circuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.592J Statistical Physics in Biology (MIT) 8.592J Statistical Physics in Biology (MIT)

Description

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution. Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.

Subjects

8.592 | 8.592 | HST.452 | HST.452 | Statistical physics | Statistical physics | Bioinformatics | Bioinformatics | DNA | DNA | gene finding | gene finding | sequence comparison | sequence comparison | phylogenetic trees | phylogenetic trees | biopolymers | biopolymers | DNA double helix | DNA double helix | secondary structure of RNA | secondary structure of RNA | protein folding | protein folding | protein motors | protein motors | membranes | membranes | cellular networks | cellular networks | neural networks | neural networks | evolution | evolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.599 Workshop in IT: Collaborative Innovation Networks (MIT) 15.599 Workshop in IT: Collaborative Innovation Networks (MIT)

Description

Diversity begets creativity—in this seminar we tap the amazing power of swarm creativity on the Web by studying and working together as Collaborative Innovation Networks (COINs). As interdisciplinary teams of MIT management, SCAD design, University of Cologne informatics, and Aalto University software engineering students we will explore how to discover latest trends on the Web, and how to make them succeed in online social networks. We study a wide range of methods for predictive analytics (coolhunting) and online social marketing (coolfarming), mostly based on social network analysis and the emerging science of collaboration. Students will also learn to use our own unique MIT-developed Condor tool for Web mining, social network analysis, and trend prediction. Diversity begets creativity—in this seminar we tap the amazing power of swarm creativity on the Web by studying and working together as Collaborative Innovation Networks (COINs). As interdisciplinary teams of MIT management, SCAD design, University of Cologne informatics, and Aalto University software engineering students we will explore how to discover latest trends on the Web, and how to make them succeed in online social networks. We study a wide range of methods for predictive analytics (coolhunting) and online social marketing (coolfarming), mostly based on social network analysis and the emerging science of collaboration. Students will also learn to use our own unique MIT-developed Condor tool for Web mining, social network analysis, and trend prediction.

Subjects

collaborative innovation networks | collaborative innovation networks | social networks | social networks | social marketing | social marketing | Web | Web | swarm creativity | swarm creativity | predictive analytics | predictive analytics | Web trends | Web trends | Facebook | Facebook | email | email | Web mining | Web mining | social network analysis | social network analysis | trend predictions | trend predictions | viral marketing | viral marketing | global virtual collaboration | global virtual collaboration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.342 Network Representations of Complex Engineering Systems (MIT) ESD.342 Network Representations of Complex Engineering Systems (MIT)

Description

This course provides a deep understanding of engineering systems at a level intended for research on complex engineering systems. It provides a review and extension of what is known about system architecture and complexity from a theoretical point of view while examining the origins of and recent developments in the field. The class considers how and where the theory has been applied, and uses key analytical methods proposed. Students examine the level of observational (qualitative and quantitative) understanding necessary for successful use of the theoretical framework for a specific engineering system. Case studies apply the theory and principles to engineering systems. This course provides a deep understanding of engineering systems at a level intended for research on complex engineering systems. It provides a review and extension of what is known about system architecture and complexity from a theoretical point of view while examining the origins of and recent developments in the field. The class considers how and where the theory has been applied, and uses key analytical methods proposed. Students examine the level of observational (qualitative and quantitative) understanding necessary for successful use of the theoretical framework for a specific engineering system. Case studies apply the theory and principles to engineering systems.

Subjects

enterprise architecture | enterprise architecture | complex networks | complex networks | quantitative metrics | quantitative metrics | affiliation networks | affiliation networks | decomposition methods | decomposition methods | percolation theory | percolation theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ESD.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata