Searching for neurotransmission : 4 results found | RSS Feed for this search

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT) 9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control.

Subjects

neurotransmission | neurotransmission | nerve terminals | nerve terminals | monoamine transmitters | monoamine transmitters | acetylcholine | acetylcholine | serotonin | serotonin | dopamine | dopamine | norepinephrine | norepinephrine | amino acid and peptide transmitters | amino acid and peptide transmitters | neuromodulators | neuromodulators | adenosine | adenosine | neurotransmitter synthesis | neurotransmitter synthesis | release | release | inactivation | inactivation | receptor-mediated | receptor-mediated | second-messenger | second-messenger | neurotransmitter | neurotransmitter | antidepressant | antidepressant | brain lipid | brain lipid | blood brain barrier | blood brain barrier | parkinson's disease | parkinson's disease | seratonin | seratonin | depression | depression | glutamate | glutamate | aspartate | aspartate | NDMA | NDMA | drug | drug | drug discovery | drug discovery | pharmaceutical | pharmaceutical | signaling pathway | signaling pathway | receptor | receptor | spinal cord | spinal cord | marijuana | marijuana | adensosine | adensosine | histamine | histamine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT) 9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

Considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. Focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. An additional project is required for graduate credit. Considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. Focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. An additional project is required for graduate credit.

Subjects

neurotransmission | neurotransmission | nerve terminals | nerve terminals | monoamine transmitters | monoamine transmitters | acetylcholine | acetylcholine | serotonin | serotonin | dopamine | dopamine | norepinephrine | norepinephrine | amino acid and peptide transmitters | amino acid and peptide transmitters | neuromodulators | neuromodulators | adenosine | adenosine | neurotransmitter synthesis | neurotransmitter synthesis | release | release | inactivation | inactivation | receptor-mediated | receptor-mediated | second-messenger | second-messenger

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control.

Subjects

neurotransmission | nerve terminals | monoamine transmitters | acetylcholine | serotonin | dopamine | norepinephrine | amino acid and peptide transmitters | neuromodulators | adenosine | neurotransmitter synthesis | release | inactivation | receptor-mediated | second-messenger | neurotransmitter | antidepressant | brain lipid | blood brain barrier | parkinson's disease | seratonin | depression | glutamate | aspartate | NDMA | drug | drug discovery | pharmaceutical | signaling pathway | receptor | spinal cord | marijuana | adensosine | histamine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

Considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. Focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. An additional project is required for graduate credit.

Subjects

neurotransmission | nerve terminals | monoamine transmitters | acetylcholine | serotonin | dopamine | norepinephrine | amino acid and peptide transmitters | neuromodulators | adenosine | neurotransmitter synthesis | release | inactivation | receptor-mediated | second-messenger

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata