Searching for number : 3258 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

SP.2H3 Ancient Philosophy and Mathematics (MIT) SP.2H3 Ancient Philosophy and Mathematics (MIT)

Description

Western philosophy and theoretical mathematics were born together, and the cross-fertilization of ideas in the two disciplines was continuously acknowledged throughout antiquity. In this course, we read works of ancient Greek philosophy and mathematics, and investigate the way in which ideas of definition, reason, argument and proof, rationality and irrationality, number, quality and quantity, truth, and even the idea of an idea were shaped by the interplay of philosophic and mathematical inquiry. Western philosophy and theoretical mathematics were born together, and the cross-fertilization of ideas in the two disciplines was continuously acknowledged throughout antiquity. In this course, we read works of ancient Greek philosophy and mathematics, and investigate the way in which ideas of definition, reason, argument and proof, rationality and irrationality, number, quality and quantity, truth, and even the idea of an idea were shaped by the interplay of philosophic and mathematical inquiry.

Subjects

mathematics | mathematics | geometry | geometry | history | history | philosophy | philosophy | Greek philosophy | Greek philosophy | Plato | Plato | Euclid | Euclid | Aristotle | Aristotle | Rene Descartes | Rene Descartes | Nicomachus | Nicomachus | Francis Bacon | Francis Bacon | number | number | irrational number | irrational number | ratio | ratio | ethics | ethics | logos | logos | logic | logic | ancient knowing | ancient knowing | modern knowing | modern knowing | Greek conception of number | Greek conception of number | idea of number | idea of number | courage | courage | justice | justice | pursuit of truth | pursuit of truth | truth as a surd | truth as a surd

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.2H3 Ancient Philosophy and Mathematics (MIT) ES.2H3 Ancient Philosophy and Mathematics (MIT)

Description

Western philosophy and theoretical mathematics were born together, and the cross-fertilization of ideas in the two disciplines was continuously acknowledged throughout antiquity. In this course, we read works of ancient Greek philosophy and mathematics, and investigate the way in which ideas of definition, reason, argument and proof, rationality and irrationality, number, quality and quantity, truth, and even the idea of an idea were shaped by the interplay of philosophic and mathematical inquiry. Western philosophy and theoretical mathematics were born together, and the cross-fertilization of ideas in the two disciplines was continuously acknowledged throughout antiquity. In this course, we read works of ancient Greek philosophy and mathematics, and investigate the way in which ideas of definition, reason, argument and proof, rationality and irrationality, number, quality and quantity, truth, and even the idea of an idea were shaped by the interplay of philosophic and mathematical inquiry.

Subjects

mathematics | mathematics | geometry | geometry | history | history | philosophy | philosophy | Greek philosophy | Greek philosophy | Plato | Plato | Euclid | Euclid | Aristotle | Aristotle | Rene Descartes | Rene Descartes | Nicomachus | Nicomachus | Francis Bacon | Francis Bacon | number | number | irrational number | irrational number | ratio | ratio | ethics | ethics | logos | logos | logic | logic | ancient knowing | ancient knowing | modern knowing | modern knowing | Greek conception of number | Greek conception of number | idea of number | idea of number | courage | courage | justice | justice | pursuit of truth | pursuit of truth | truth as a surd | truth as a surd

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Prime Numbers Prime Numbers

Description

Dr Richard Earl of the Mathematical Institute, Oxford presents a talk about prime numbers. What they are and their role in internet security. Dr Richard Earl of the Mathematical Institute, Oxford presents a talk about prime numbers. What they are and their role in internet security.

Subjects

maths | maths | numbers | numbers | prime numbers | prime numbers | Internet security | Internet security | maths | numbers | prime numbers | Internet security | 2013-12-09 | maths | numbers | prime numbers | Internet security | 2013-12-09

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129122/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Prime Numbers Prime Numbers

Description

Dr Richard Earl of the Mathematical Institute, Oxford presents a talk about prime numbers. What they are and their role in internet security. Dr Richard Earl of the Mathematical Institute, Oxford presents a talk about prime numbers. What they are and their role in internet security.

Subjects

maths | maths | numbers | numbers | prime numbers | prime numbers | Internet security | Internet security | maths | numbers | prime numbers | Internet security | 2013-12-09 | maths | numbers | prime numbers | Internet security | 2013-12-09

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129122/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.SP.2H3 Ancient Philosophy and Mathematics (MIT) ES.SP.2H3 Ancient Philosophy and Mathematics (MIT)

Description

Western philosophy and theoretical mathematics were born together, and the cross-fertilization of ideas in the two disciplines was continuously acknowledged throughout antiquity. In this course, we read works of ancient Greek philosophy and mathematics, and investigate the way in which ideas of definition, reason, argument and proof, rationality and irrationality, number, quality and quantity, truth, and even the idea of an idea were shaped by the interplay of philosophic and mathematical inquiry. Western philosophy and theoretical mathematics were born together, and the cross-fertilization of ideas in the two disciplines was continuously acknowledged throughout antiquity. In this course, we read works of ancient Greek philosophy and mathematics, and investigate the way in which ideas of definition, reason, argument and proof, rationality and irrationality, number, quality and quantity, truth, and even the idea of an idea were shaped by the interplay of philosophic and mathematical inquiry.

Subjects

mathematics | mathematics | geometry | geometry | history | history | philosophy | philosophy | Greek philosophy | Greek philosophy | Plato | Plato | Euclid | Euclid | Aristotle | Aristotle | Rene Descartes | Rene Descartes | Nicomachus | Nicomachus | Francis Bacon | Francis Bacon | number | number | irrational number | irrational number | ratio | ratio | ethics | ethics | logos | logos | logic | logic | ancient knowing | ancient knowing | modern knowing | modern knowing | Greek conception of number | Greek conception of number | idea of number | idea of number | courage | courage | justice | justice | pursuit of truth | pursuit of truth | truth as a surd | truth as a surd

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.2H3 Ancient Philosophy and Mathematics (MIT) ES.2H3 Ancient Philosophy and Mathematics (MIT)

Description

Western philosophy and theoretical mathematics were born together, and the cross-fertilization of ideas in the two disciplines was continuously acknowledged throughout antiquity. In this course, we read works of ancient Greek philosophy and mathematics, and investigate the way in which ideas of definition, reason, argument and proof, rationality and irrationality, number, quality and quantity, truth, and even the idea of an idea were shaped by the interplay of philosophic and mathematical inquiry. Western philosophy and theoretical mathematics were born together, and the cross-fertilization of ideas in the two disciplines was continuously acknowledged throughout antiquity. In this course, we read works of ancient Greek philosophy and mathematics, and investigate the way in which ideas of definition, reason, argument and proof, rationality and irrationality, number, quality and quantity, truth, and even the idea of an idea were shaped by the interplay of philosophic and mathematical inquiry.

Subjects

mathematics | mathematics | geometry | geometry | history | history | philosophy | philosophy | Greek philosophy | Greek philosophy | Plato | Plato | Euclid | Euclid | Aristotle | Aristotle | Rene Descartes | Rene Descartes | Nicomachus | Nicomachus | Francis Bacon | Francis Bacon | number | number | irrational number | irrational number | ratio | ratio | ethics | ethics | logos | logos | logic | logic | ancient knowing | ancient knowing | modern knowing | modern knowing | Greek conception of number | Greek conception of number | idea of number | idea of number | courage | courage | justice | justice | pursuit of truth | pursuit of truth | truth as a surd | truth as a surd

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ES.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.2H3 Ancient Philosophy and Mathematics (MIT) ES.2H3 Ancient Philosophy and Mathematics (MIT)

Description

Western philosophy and theoretical mathematics were born together, and the cross-fertilization of ideas in the two disciplines was continuously acknowledged throughout antiquity. In this course, we read works of ancient Greek philosophy and mathematics, and investigate the way in which ideas of definition, reason, argument and proof, rationality and irrationality, number, quality and quantity, truth, and even the idea of an idea were shaped by the interplay of philosophic and mathematical inquiry. Western philosophy and theoretical mathematics were born together, and the cross-fertilization of ideas in the two disciplines was continuously acknowledged throughout antiquity. In this course, we read works of ancient Greek philosophy and mathematics, and investigate the way in which ideas of definition, reason, argument and proof, rationality and irrationality, number, quality and quantity, truth, and even the idea of an idea were shaped by the interplay of philosophic and mathematical inquiry.

Subjects

mathematics | mathematics | geometry | geometry | history | history | philosophy | philosophy | Greek philosophy | Greek philosophy | Plato | Plato | Euclid | Euclid | Aristotle | Aristotle | Rene Descartes | Rene Descartes | Nicomachus | Nicomachus | Francis Bacon | Francis Bacon | number | number | irrational number | irrational number | ratio | ratio | ethics | ethics | logos | logos | logic | logic | ancient knowing | ancient knowing | modern knowing | modern knowing | Greek conception of number | Greek conception of number | idea of number | idea of number | courage | courage | justice | justice | pursuit of truth | pursuit of truth | truth as a surd | truth as a surd

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.785 Analytic Number Theory (MIT) 18.785 Analytic Number Theory (MIT)

Description

This course is an introduction to analytic number theory, including the use of zeta functions and L-functions to prove distribution results concerning prime numbers (e.g., the prime number theorem in arithmetic progressions). This course is an introduction to analytic number theory, including the use of zeta functions and L-functions to prove distribution results concerning prime numbers (e.g., the prime number theorem in arithmetic progressions).

Subjects

analytic number theory | analytic number theory | Riemann zeta function | Riemann zeta function | L-functions | L-functions | prime number theorem | prime number theorem | Dirichlet's theorem | Dirichlet's theorem | Riemann Hypothesis | Riemann Hypothesis | Sieving methods | Sieving methods | Linnik | Linnik | Linnik's large sieve | Linnik's large sieve | Selberg | Selberg | Selberg's sieve | Selberg's sieve | distribution of prime numbers | distribution of prime numbers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.785 Analytic Number Theory (MIT) 18.785 Analytic Number Theory (MIT)

Description

This course is an introduction to analytic number theory, including the use of zeta functions and L-functions to prove distribution results concerning prime numbers (e.g., the prime number theorem in arithmetic progressions). This course is an introduction to analytic number theory, including the use of zeta functions and L-functions to prove distribution results concerning prime numbers (e.g., the prime number theorem in arithmetic progressions).

Subjects

analytic number theory | analytic number theory | Riemann zeta function | Riemann zeta function | L-functions | L-functions | prime number theorem | prime number theorem | Dirichlet's theorem | Dirichlet's theorem | Riemann Hypothesis | Riemann Hypothesis | Sieving methods | Sieving methods | Linnik | Linnik | Linnik's large sieve | Linnik's large sieve | Selberg | Selberg | Selberg's sieve | Selberg's sieve | distribution of prime numbers | distribution of prime numbers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.786 Topics in Algebraic Number Theory (MIT) 18.786 Topics in Algebraic Number Theory (MIT)

Description

This course is a first course in algebraic number theory. Topics to be covered include number fields, class numbers, Dirichlet's units theorem, cyclotomic fields, local fields, valuations, decomposition and inertia groups, ramification, basic analytic methods, and basic class field theory. An additional theme running throughout the course will be the use of computer algebra to investigate number-theoretic questions; this theme will appear primarily in the problem sets. This course is a first course in algebraic number theory. Topics to be covered include number fields, class numbers, Dirichlet's units theorem, cyclotomic fields, local fields, valuations, decomposition and inertia groups, ramification, basic analytic methods, and basic class field theory. An additional theme running throughout the course will be the use of computer algebra to investigate number-theoretic questions; this theme will appear primarily in the problem sets.

Subjects

algebraic number theory | algebraic number theory | number fields | number fields | class numbers | class numbers | Dirichlet's units theorem | Dirichlet's units theorem | cyclotomic fields | cyclotomic fields | local fields | local fields | valuations | valuations | decomposition and inertia groups | decomposition and inertia groups | ramification | ramification | basic analytic methods | basic analytic methods | basic class field theory | basic class field theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.786 Topics in Algebraic Number Theory (MIT) 18.786 Topics in Algebraic Number Theory (MIT)

Description

This course is a first course in algebraic number theory. Topics to be covered include number fields, class numbers, Dirichlet's units theorem, cyclotomic fields, local fields, valuations, decomposition and inertia groups, ramification, basic analytic methods, and basic class field theory. An additional theme running throughout the course will be the use of computer algebra to investigate number-theoretic questions; this theme will appear primarily in the problem sets. This course is a first course in algebraic number theory. Topics to be covered include number fields, class numbers, Dirichlet's units theorem, cyclotomic fields, local fields, valuations, decomposition and inertia groups, ramification, basic analytic methods, and basic class field theory. An additional theme running throughout the course will be the use of computer algebra to investigate number-theoretic questions; this theme will appear primarily in the problem sets.

Subjects

algebraic number theory | algebraic number theory | number fields | number fields | class numbers | class numbers | Dirichlet's units theorem | Dirichlet's units theorem | cyclotomic fields | cyclotomic fields | local fields | local fields | valuations | valuations | decomposition and inertia groups | decomposition and inertia groups | ramification | ramification | basic analytic methods | basic analytic methods | basic class field theory | basic class field theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.100 Aerodynamics (MIT) 16.100 Aerodynamics (MIT)

Description

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLAB&#1 This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLAB&#1

Subjects

aerodynamics | aerodynamics | airflow | airflow | air | air | body | body | aircraft | aircraft | aerodynamic modes | aerodynamic modes | aero | aero | forces | forces | flow | flow | computational | computational | CFD | CFD | aerodynamic analysis | aerodynamic analysis | lift | lift | drag | drag | potential flows | potential flows | imcompressible | imcompressible | supersonic | supersonic | subsonic | subsonic | panel method | panel method | vortex lattice method | vortex lattice method | boudary layer | boudary layer | transition | transition | turbulence | turbulence | inviscid | inviscid | viscous | viscous | euler | euler | navier-stokes | navier-stokes | wind tunnel | wind tunnel | flow similarity | flow similarity | non-dimensional | non-dimensional | mach number | mach number | reynolds number | reynolds number | integral momentum | integral momentum | airfoil | airfoil | wing | wing | stall | stall | friction drag | friction drag | induced drag | induced drag | wave drag | wave drag | pressure drag | pressure drag | fluid element | fluid element | shear strain | shear strain | normal strain | normal strain | vorticity | vorticity | divergence | divergence | substantial derviative | substantial derviative | laminar | laminar | displacement thickness | displacement thickness | momentum thickness | momentum thickness | skin friction | skin friction | separation | separation | velocity profile | velocity profile | 2-d panel | 2-d panel | 3-d vortex | 3-d vortex | thin airfoil | thin airfoil | lifting line | lifting line | aspect ratio | aspect ratio | twist | twist | camber | camber | wing loading | wing loading | roll moments | roll moments | finite volume approximation | finite volume approximation | shocks | shocks | expansion fans | expansion fans | shock-expansion theory | shock-expansion theory | transonic | transonic | critical mach number | critical mach number | wing sweep | wing sweep | Kutta condition | Kutta condition | team project | team project | blended-wing-body | blended-wing-body | computational fluid dynamics | computational fluid dynamics | Incompressible | Incompressible

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.100 Aerodynamics (MIT) 16.100 Aerodynamics (MIT)

Description

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.

Subjects

aerodynamics | aerodynamics | airflow | airflow | air | air | body | body | aircraft | aircraft | aerodynamic modes | aerodynamic modes | aero | aero | forces | forces | flow | flow | computational | computational | CFD | CFD | aerodynamic analysis | aerodynamic analysis | lift | lift | drag | drag | potential flows | potential flows | imcompressible | imcompressible | supersonic | supersonic | subsonic | subsonic | panel method | panel method | vortex lattice method | vortex lattice method | boudary layer | boudary layer | transition | transition | turbulence | turbulence | inviscid | inviscid | viscous | viscous | euler | euler | navier-stokes | navier-stokes | wind tunnel | wind tunnel | flow similarity | flow similarity | non-dimensional | non-dimensional | mach number | mach number | reynolds number | reynolds number | integral momentum | integral momentum | airfoil | airfoil | wing | wing | stall | stall | friction drag | friction drag | induced drag | induced drag | wave drag | wave drag | pressure drag | pressure drag | fluid element | fluid element | shear strain | shear strain | normal strain | normal strain | vorticity | vorticity | divergence | divergence | substantial derivative | substantial derivative | laminar | laminar | displacement thickness | displacement thickness | momentum thickness | momentum thickness | skin friction | skin friction | separation | separation | velocity profile | velocity profile | 2-d panel | 2-d panel | 3-d vortex | 3-d vortex | thin airfoil | thin airfoil | lifting line | lifting line | aspect ratio | aspect ratio | twist | twist | camber | camber | wing loading | wing loading | roll moments | roll moments | finite volume approximation | finite volume approximation | shocks | shocks | expansion fans | expansion fans | shock-expansion theory | shock-expansion theory | transonic | transonic | critical mach number | critical mach number | wing sweep | wing sweep | Kutta condition | Kutta condition | team project | team project | blended-wing-body | blended-wing-body | computational fluid dynamics | computational fluid dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.100 Aerodynamics (MIT) 16.100 Aerodynamics (MIT)

Description

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.

Subjects

aerodynamics | aerodynamics | airflow | airflow | air | air | body | body | aircraft | aircraft | aerodynamic modes | aerodynamic modes | aero | aero | forces | forces | flow | flow | computational | computational | CFD | CFD | aerodynamic analysis | aerodynamic analysis | lift | lift | drag | drag | potential flows | potential flows | imcompressible | imcompressible | supersonic | supersonic | subsonic | subsonic | panel method | panel method | vortex lattice method | vortex lattice method | boudary layer | boudary layer | transition | transition | turbulence | turbulence | inviscid | inviscid | viscous | viscous | euler | euler | navier-stokes | navier-stokes | wind tunnel | wind tunnel | flow similarity | flow similarity | non-dimensional | non-dimensional | mach number | mach number | reynolds number | reynolds number | integral momentum | integral momentum | airfoil | airfoil | wing | wing | stall | stall | friction drag | friction drag | induced drag | induced drag | wave drag | wave drag | pressure drag | pressure drag | fluid element | fluid element | shear strain | shear strain | normal strain | normal strain | vorticity | vorticity | divergence | divergence | substantial derivative | substantial derivative | laminar | laminar | displacement thickness | displacement thickness | momentum thickness | momentum thickness | skin friction | skin friction | separation | separation | velocity profile | velocity profile | 2-d panel | 2-d panel | 3-d vortex | 3-d vortex | thin airfoil | thin airfoil | lifting line | lifting line | aspect ratio | aspect ratio | twist | twist | camber | camber | wing loading | wing loading | roll moments | roll moments | finite volume approximation | finite volume approximation | shocks | shocks | expansion fans | expansion fans | shock-expansion theory | shock-expansion theory | transonic | transonic | critical mach number | critical mach number | wing sweep | wing sweep | Kutta condition | Kutta condition | team project | team project | blended-wing-body | blended-wing-body | computational fluid dynamics | computational fluid dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.100 Aerodynamics (MIT) 16.100 Aerodynamics (MIT)

Description

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLAB&#1 This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLAB&#1

Subjects

aerodynamics | aerodynamics | airflow | airflow | air | air | body | body | aircraft | aircraft | aerodynamic modes | aerodynamic modes | aero | aero | forces | forces | flow | flow | computational | computational | CFD | CFD | aerodynamic analysis | aerodynamic analysis | lift | lift | drag | drag | potential flows | potential flows | imcompressible | imcompressible | supersonic | supersonic | subsonic | subsonic | panel method | panel method | vortex lattice method | vortex lattice method | boudary layer | boudary layer | transition | transition | turbulence | turbulence | inviscid | inviscid | viscous | viscous | euler | euler | navier-stokes | navier-stokes | wind tunnel | wind tunnel | flow similarity | flow similarity | non-dimensional | non-dimensional | mach number | mach number | reynolds number | reynolds number | integral momentum | integral momentum | airfoil | airfoil | wing | wing | stall | stall | friction drag | friction drag | induced drag | induced drag | wave drag | wave drag | pressure drag | pressure drag | fluid element | fluid element | shear strain | shear strain | normal strain | normal strain | vorticity | vorticity | divergence | divergence | substantial derviative | substantial derviative | laminar | laminar | displacement thickness | displacement thickness | momentum thickness | momentum thickness | skin friction | skin friction | separation | separation | velocity profile | velocity profile | 2-d panel | 2-d panel | 3-d vortex | 3-d vortex | thin airfoil | thin airfoil | lifting line | lifting line | aspect ratio | aspect ratio | twist | twist | camber | camber | wing loading | wing loading | roll moments | roll moments | finite volume approximation | finite volume approximation | shocks | shocks | expansion fans | expansion fans | shock-expansion theory | shock-expansion theory | transonic | transonic | critical mach number | critical mach number | wing sweep | wing sweep | Kutta condition | Kutta condition | team project | team project | blended-wing-body | blended-wing-body | computational fluid dynamics | computational fluid dynamics | Incompressible | Incompressible

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Collecting scrap at Hetton Station Goods Yard Collecting scrap at Hetton Station Goods Yard

Description

Subjects

road | road | roof | roof | sky | sky | abstract | abstract | blur | blur | industry | industry | wheel | wheel | metal | metal | stone | stone | wall | wall | shirt | shirt | yard | yard | standing | standing | fence | fence | buildings | buildings | 1974 | 1974 | interesting | interesting | workers | workers | industrial | industrial | carriage | carriage | unitedkingdom | unitedkingdom | path | path | timber | timber | mark | mark | coat | coat | debris | debris | caps | caps | grain | grain | plate | plate | ground | ground | social | social | number | number | soil | soil | cap | cap | transportation | transportation | signage | signage | bolt | bolt | archives | archives | land | land | letter | letter | vehicle | vehicle | trousers | trousers | unusual | unusual | telegraphpole | telegraphpole | scrap | scrap | railways | railways | crease | crease | flap | flap | attentive | attentive | slope | slope | collecting | collecting | numberplate | numberplate | fascinating | fascinating | digitalimage | digitalimage | sunderland | sunderland | scrapmetal | scrapmetal | citycouncil | citycouncil | 1895 | 1895 | blackandwhitephotograph | blackandwhitephotograph | northeastofengland | northeastofengland | goodsyard | goodsyard | moorsley | moorsley | mid20thcentury | mid20thcentury | eastrainton | eastrainton | hettonlehole | hettonlehole | easingtonlane | easingtonlane | hettondowns | hettondowns | hettonurbandistrictcouncil | hettonurbandistrictcouncil | hettonstationgoodsyard | hettonstationgoodsyard | hettonleholeurbandistrict | hettonleholeurbandistrict | sunderlandmetropolitanborough | sunderlandmetropolitanborough | localgovernmentact1894 | localgovernmentact1894

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and

Subjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagrams | constant coefficients | constant coefficients | complex numbers | complex numbers | exponentials | exponentials | eigenvalues | eigenvalues | eigenvectors | eigenvectors

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Tom had been warned about drinking and driving Tom had been warned about drinking and driving

Description

Subjects

show | show | road | road | door | door | roof | roof | shadow | shadow | sky | sky | horses | horses | people | people | abstract | abstract | brick | brick | industry | industry | window | window | car | car | wall | wall | shirt | shirt | buildings | buildings | hair | hair | daylight | daylight | bottle | bottle | interesting | interesting | construction | construction | stair | stair | industrial | industrial | driving | driving | carriage | carriage | display | display | label | label | flag | flag | bald | bald | tie | tie | social | social | rope | rope | parade | parade | number | number | celebration | celebration | event | event | frame | frame | gathering | gathering | archives | archives | vehicle | vehicle | driver | driver | 1960s | 1960s | unusual | unusual | striking | striking | wacky | wacky | occasion | occasion | spectator | spectator | tyneside | tyneside | crease | crease | development | development | crowds | crowds | numberplate | numberplate | bizzare | bizzare | newcastleupontyne | newcastleupontyne | fascinating | fascinating | digitalimage | digitalimage | factories | factories | beerbottle | beerbottle | rivertyne | rivertyne | manufacturing | manufacturing | showpiece | showpiece | northeastengland | northeastengland | grandparade | grandparade | blackandwhitephotograph | blackandwhitephotograph | scotswoodroad | scotswoodroad | coachwork | coachwork | lordarmstrong | lordarmstrong | vickersarmstrong | vickersarmstrong | elswickworks | elswickworks | williamgeorgearmstrong | williamgeorgearmstrong | workshopoftheworld | workshopoftheworld | blaydonraces | blaydonraces | scotswoodworks | scotswoodworks | centenaryoftheblaydonraces | centenaryoftheblaydonraces | 9june1962 | 9june1962

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.304 Undergraduate Seminar in Discrete Mathematics (MIT) 18.304 Undergraduate Seminar in Discrete Mathematics (MIT)

Description

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.

Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.304 Undergraduate Seminar in Discrete Mathematics (MIT) 18.304 Undergraduate Seminar in Discrete Mathematics (MIT)

Description

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.

Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.104 Seminar in Analysis: Applications to Number Theory (MIT) 18.104 Seminar in Analysis: Applications to Number Theory (MIT)

Description

18.104 is an undergraduate level seminar for mathematics majors. Students present and discuss subject matter taken from current journals or books. Instruction and practice in written and oral communication is provided. The topics vary from year to year. The topic for this term is Applications to Number Theory. 18.104 is an undergraduate level seminar for mathematics majors. Students present and discuss subject matter taken from current journals or books. Instruction and practice in written and oral communication is provided. The topics vary from year to year. The topic for this term is Applications to Number Theory.

Subjects

Infinitude of the primes | Infinitude of the primes | Summing powers of integers | Summing powers of integers | Bernoulli polynomials | Bernoulli polynomials | sine product formula | sine product formula | $\zeta(2n)$ | $\zeta(2n)$ | Fermat's Little Theorem | Fermat's Little Theorem | Fermat's Great Theorem | Fermat's Great Theorem | Averages of arithmetic functions | Averages of arithmetic functions | arithmetic-geometric mean | arithmetic-geometric mean | Gauss' theorem | Gauss' theorem | Wallis's formula | Wallis's formula | Stirling's formula | Stirling's formula | prime number theorem | prime number theorem | Riemann's hypothesis | Riemann's hypothesis | Euler's proof of infinitude of primes | Euler's proof of infinitude of primes | Density of prime numbers | Density of prime numbers | Euclidean algorithm | Euclidean algorithm | Golden Ratio | Golden Ratio

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Lewis Carroll in Numberland Lewis Carroll in Numberland

Description

An intriguing biographical exploration of Lewis Carroll, focusing on the author's mathematical career and influences. An intriguing biographical exploration of Lewis Carroll, focusing on the author's mathematical career and influences.

Subjects

alice in wonderland | alice in wonderland | looking glass | looking glass | alice | alice | maths | maths | Lewis Carroll | Lewis Carroll | wonderland | wonderland | mathematics | mathematics | numberland | numberland | alice in wonderland | looking glass | alice | maths | Lewis Carroll | wonderland | mathematics | numberland | 2009-09-26 | alice in wonderland | looking glass | alice | maths | Lewis Carroll | wonderland | mathematics | numberland | 2009-09-26

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129169/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.104 Seminar in Analysis: Applications to Number Theory (MIT) 18.104 Seminar in Analysis: Applications to Number Theory (MIT)

Description

18.104 is an undergraduate level seminar for mathematics majors. Students present and discuss subject matter taken from current journals or books. Instruction and practice in written and oral communication is provided. The topics vary from year to year. The topic for this term is Applications to Number Theory. 18.104 is an undergraduate level seminar for mathematics majors. Students present and discuss subject matter taken from current journals or books. Instruction and practice in written and oral communication is provided. The topics vary from year to year. The topic for this term is Applications to Number Theory.

Subjects

Infinitude of the primes | Infinitude of the primes | Summing powers of integers | Summing powers of integers | Bernoulli polynomials | Bernoulli polynomials | sine product formula | sine product formula | $\zeta(2n)$ | $\zeta(2n)$ | Fermat's Little Theorem | Fermat's Little Theorem | Fermat's Great Theorem | Fermat's Great Theorem | Averages of arithmetic functions | Averages of arithmetic functions | arithmetic-geometric mean | arithmetic-geometric mean | Gauss' theorem | Gauss' theorem | Wallis's formula | Wallis's formula | Stirling's formula | Stirling's formula | prime number theorem | prime number theorem | Riemann's hypothesis | Riemann's hypothesis | Euler's proof of infinitude of primes | Euler's proof of infinitude of primes | Density of prime numbers | Density of prime numbers | Euclidean algorithm | Euclidean algorithm | Golden Ratio | Golden Ratio

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A numbers game: counting refugees and international burden-sharing A numbers game: counting refugees and international burden-sharing

Description

Public Seminar Series, Hilary term 2013. Seminar by dr Alice Edwards (UNHCR) recorded on 13 February 2013 at the Oxford Department of International Development, University of Oxford. The United Nations Refugee Convention recognises that the problem of refugees is inherently international and cannot be solved by a single State alone. Yet achieving international cooperation, or even achieving consensus on what this means, has had a long and chequered history. This lecture will examine the many ways in which a focus on asylum statistics has impacted on the international protection regime for refugees, and what needs to be done about it. Public Seminar Series, Hilary term 2013. Seminar by dr Alice Edwards (UNHCR) recorded on 13 February 2013 at the Oxford Department of International Development, University of Oxford. The United Nations Refugee Convention recognises that the problem of refugees is inherently international and cannot be solved by a single State alone. Yet achieving international cooperation, or even achieving consensus on what this means, has had a long and chequered history. This lecture will examine the many ways in which a focus on asylum statistics has impacted on the international protection regime for refugees, and what needs to be done about it.

Subjects

international burden-sharing | international burden-sharing | refugee numbers | refugee numbers | international burden-sharing | refugee numbers | international burden-sharing | refugee numbers

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/128985/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.409 Behavior of Algorithms (MIT) 18.409 Behavior of Algorithms (MIT)

Description

This course is a study of Behavior of Algorithms and covers an area of current interest in theoretical computer science. The topics vary from term to term. During this term, we discuss rigorous approaches to explaining the typical performance of algorithms with a focus on the following approaches: smoothed analysis, condition numbers/parametric analysis, and subclassing inputs. This course is a study of Behavior of Algorithms and covers an area of current interest in theoretical computer science. The topics vary from term to term. During this term, we discuss rigorous approaches to explaining the typical performance of algorithms with a focus on the following approaches: smoothed analysis, condition numbers/parametric analysis, and subclassing inputs.

Subjects

Condition number | Condition number | largest singluar value of a matrix | largest singluar value of a matrix | Smoothed analysis | Smoothed analysis | Gaussian elimination | Gaussian elimination | Growth factors of partial and complete pivoting | Growth factors of partial and complete pivoting | GE of graphs with low bandwidth or small separators | GE of graphs with low bandwidth or small separators | Spectral Partitioning of planar graphs | Spectral Partitioning of planar graphs | spectral paritioning of well-shaped meshes | spectral paritioning of well-shaped meshes | spectral paritioning of nearest neighbor graphs | spectral paritioning of nearest neighbor graphs | Turner's theorem | Turner's theorem | bandwidth of semi-random graphs. | bandwidth of semi-random graphs. | McSherry's spectral bisection algorithm | McSherry's spectral bisection algorithm | Linear Programming | Linear Programming | von Neumann's algorithm | von Neumann's algorithm | primal and dual simplex methods | and duality Strong duality theorem | primal and dual simplex methods | and duality Strong duality theorem | Renegar's condition numbers | Renegar's condition numbers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata