Searching for ocean : 456 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT) 12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT)

Description

This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. File decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site. This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. File decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site.

Subjects

meteorology | meteorology | climate | climate | oceanography | oceanography | Eulerian and Lagrangian kinematics | Eulerian and Lagrangian kinematics | mass | mass | momentum | momentum | energy | energy | Vorticity | Vorticity | divergence Scaling | divergence Scaling | geostrophic approximation | geostrophic approximation | Ekman layers | Ekman layers | Vortex motion | Vortex motion | fluid dynamics | fluid dynamics | atmospheric science | atmospheric science | physical oceanography | physical oceanography | ocean engineering | ocean engineering | oceans | oceans | fluid flow | fluid flow | conservation equations | conservation equations | vortex flows | vortex flows | circulation | circulation | Earth | Earth | rotation | rotation | GFD kinematics | GFD kinematics | waves | waves | Eulerian kinematics | Eulerian kinematics | Lagrangian kinematics | Lagrangian kinematics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.011 Introduction to Ocean Science and Engineering (MIT) 2.011 Introduction to Ocean Science and Engineering (MIT)

Description

This course is an introduction to the fundamental aspects of science and engineering necessary for exploring, observing, and utilizing the oceans. Hands-on projects focus on instrumentation in the marine environment and the design of ocean observatories for ocean monitoring and exploration. Topics include acoustics, sound speed and refraction, sounds generated by ships and marine animals, sonar systems and their principles of operation, hydrostatic behavior of floating and submerged bodies geared towards ocean vehicle design, stability of ocean vessels, and the application of instrumentation and electronics in the marine environment. Students work with sensor systems and deploy them in the field to gather and analyze real world data. This course is an introduction to the fundamental aspects of science and engineering necessary for exploring, observing, and utilizing the oceans. Hands-on projects focus on instrumentation in the marine environment and the design of ocean observatories for ocean monitoring and exploration. Topics include acoustics, sound speed and refraction, sounds generated by ships and marine animals, sonar systems and their principles of operation, hydrostatic behavior of floating and submerged bodies geared towards ocean vehicle design, stability of ocean vessels, and the application of instrumentation and electronics in the marine environment. Students work with sensor systems and deploy them in the field to gather and analyze real world data.

Subjects

oceanography | oceanography | physical oceanography | physical oceanography | ocean circulation | ocean circulation | geostrophic flow | geostrophic flow | surface wave | surface wave | wave velocity | wave velocity | propagation phenomena | propagation phenomena | ocean acoustics | ocean acoustics | sonar | sonar | submarine | submarine | submersible | submersible | marine | marine | marine science | marine science | ship | ship | boat | boat | marine animal | marine animal | undersea | undersea | ROV | ROV | current | current | vortex | vortex | turbulence | turbulence

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.742 Marine Chemistry (MIT) 12.742 Marine Chemistry (MIT)

Description

Includes audio/video content: AV selected lectures. This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers. Includes audio/video content: AV selected lectures. This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers.

Subjects

chemical oceanography | chemical oceanography | biogeochemical cycling | biogeochemical cycling | water column processes | water column processes | ocean particles | ocean particles | seawater composition | seawater composition | ocean particle transport | ocean particle transport | carbon | carbon | oxygen | oxygen | nitrogen | nitrogen | phosphorus | phosphorus | sulfur | sulfur | carbon dioxide | carbon dioxide | sediment chemistry | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.011 Introduction to Ocean Science and Technology (13.00) (MIT) 2.011 Introduction to Ocean Science and Technology (13.00) (MIT)

Description

Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.00. In 2005, ocean engineering subjects became part of Course 2 (Department of Mec Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.00. In 2005, ocean engineering subjects became part of Course 2 (Department of Mec

Subjects

Physical oceanography | | Physical oceanography | | major ocean circulations | | major ocean circulations | | geostrophic flows | | geostrophic flows | | Surface waves | | Surface waves | | wave velocities | | wave velocities | | propagation phenomena | | propagation phenomena | | ocean acoustics | | ocean acoustics | | sonar | sonar

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.479J Water and Sanitation Infrastructure in Developing Countries (MIT) 11.479J Water and Sanitation Infrastructure in Developing Countries (MIT)

Description

This course deals with the principles of infrastructure planning in developing countries, with a focus on appropriate and sustainable technologies for water and sanitation. It also incorporates technical, socio-cultural, public health, and economic factors into the planning and design of water and sanitation systems. Upon completion, students will be able to plan simple, yet reliable, water supply and sanitation systems for developing countries that are compatible with local customs and available human and material resources. Graduate and upper division students from any department who are interested in international development at the grassroots level are encouraged to participate in this interdisciplinary subject. Acknowledgment This course was jointly developed by Earthea Nance and Sus This course deals with the principles of infrastructure planning in developing countries, with a focus on appropriate and sustainable technologies for water and sanitation. It also incorporates technical, socio-cultural, public health, and economic factors into the planning and design of water and sanitation systems. Upon completion, students will be able to plan simple, yet reliable, water supply and sanitation systems for developing countries that are compatible with local customs and available human and material resources. Graduate and upper division students from any department who are interested in international development at the grassroots level are encouraged to participate in this interdisciplinary subject. Acknowledgment This course was jointly developed by Earthea Nance and Sus

Subjects

chemical oceanography | chemical oceanography | biogeochemical cycling | biogeochemical cycling | water column processes | water column processes | ocean particles | ocean particles | seawater composition | seawater composition | ocean particle transport | ocean particle transport | carbon | carbon | oxygen | oxygen | nitrogen | nitrogen | phosphorus | phosphorus | sulfur | sulfur | carbon dioxide | carbon dioxide | sediment chemistry | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.00 Introduction to Ocean Science and Technology (MIT) 13.00 Introduction to Ocean Science and Technology (MIT)

Description

Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.Technical RequirementsAny number of software tools can be used to import the .dat files found on this course site. Please refer to the course materials for any specific i Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.Technical RequirementsAny number of software tools can be used to import the .dat files found on this course site. Please refer to the course materials for any specific i

Subjects

Physical oceanography | | Physical oceanography | | major ocean circulations | | major ocean circulations | | geostrophic flows | | geostrophic flows | | Surface waves | | Surface waves | | wave velocities | | wave velocities | | propagation phenomena | | propagation phenomena | | ocean acoustics | | ocean acoustics | | sonar | sonar

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.744 Marine Isotope Chemistry (MIT) 12.744 Marine Isotope Chemistry (MIT)

Description

The objective of this course is to develop an understanding of principles of marine isotope geochemistry, its systematics, and its application to the study of the behavior and history of the oceans within the earth system. The emphasis is on developing the underlying concepts and theory as well as proficiency in working with practical isotope systems. The course is divided into four sections: nuclear systematics, Earth formation and evolution, stable isotopes, and applications to the ocean system. The objective of this course is to develop an understanding of principles of marine isotope geochemistry, its systematics, and its application to the study of the behavior and history of the oceans within the earth system. The emphasis is on developing the underlying concepts and theory as well as proficiency in working with practical isotope systems. The course is divided into four sections: nuclear systematics, Earth formation and evolution, stable isotopes, and applications to the ocean system.

Subjects

oceanography | oceanography | chemical oceanography | chemical oceanography | isotope geochemistry | isotope geochemistry | geochemistry | geochemistry | marine science | marine science | isotopes | isotopes | radiocarbon | radiocarbon | radioactive decay | radioactive decay | radiometric dating | radiometric dating | mass spectrometry | mass spectrometry | isotope fractionation | isotope fractionation | fractionation | fractionation | water column | water column | whoi | whoi | woods hole | woods hole | earth science | earth science | atmosphere | atmosphere | ocean | ocean

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology). This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | and mineralogical changes | geochemical | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | climate change | climate change | marine records | marine records | ice core records | ice core records | continental records | continental records | paleoceanographic data | paleoceanographic data | statistics | statistics | factor analysis | factor analysis | time series analysis | time series analysis | simple climatology | simple climatology | geochemical changes | geochemical changes | mineralogical changes | mineralogical changes | glacial cycles | glacial cycles | intergalacial cycles | intergalacial cycles | earth-surface environment | earth-surface environment | environmental history | environmental history | Oxygen Isotope | Oxygen Isotope | Coral Reefs | Coral Reefs | Paleoceanography | Paleoceanography | Paleoclimatology | Paleoclimatology | Paleothermometry | Paleothermometry | Atmospheric Carbon Dioxide | Atmospheric Carbon Dioxide | Ocean Chemistry | Ocean Chemistry | Salinity | Salinity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology). This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | and mineralogical changes | geochemical | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | climate change | climate change | marine records | marine records | ice core records | ice core records | continental records | continental records | paleoceanographic data | paleoceanographic data | statistics | statistics | factor analysis | factor analysis | time series analysis | time series analysis | simple climatology | simple climatology | geochemical changes | geochemical changes | mineralogical changes | mineralogical changes | glacial cycles | glacial cycles | intergalacial cycles | intergalacial cycles | earth-surface environment | earth-surface environment | environmental history | environmental history | Oxygen Isotope | Oxygen Isotope | Coral Reefs | Coral Reefs | Paleoceanography | Paleoceanography | Paleoclimatology | Paleoclimatology | Paleothermometry | Paleothermometry | Atmospheric Carbon Dioxide | Atmospheric Carbon Dioxide | Ocean Chemistry | Ocean Chemistry | Salinity | Salinity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.808 Introduction to Observational Physical Oceanography (MIT) 12.808 Introduction to Observational Physical Oceanography (MIT)

Description

Observational physical oceanography includes topics such as the  physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions. Observational physical oceanography includes topics such as the  physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions.

Subjects

Physical description of the sea | Physical description of the sea | physical properties of seawater | physical properties of seawater | methods | methods | measurements | measurements | wind-driven ocean circulation | wind-driven ocean circulation | abyssal ocean circulation | abyssal ocean circulation | boundary processes | boundary processes | wave motions | wave motions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.333 Atmospheric and Ocean Circulations (MIT) 12.333 Atmospheric and Ocean Circulations (MIT)

Description

In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss. In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.

Subjects

atmospheric and oceanic phenomena | atmospheric and oceanic phenomena | observations | observations | theoretical interpretations | theoretical interpretations | monsoons | monsoons | El Ni?o | El Ni?o | planetary waves | planetary waves | atmospheric synoptic eddies and fronts | atmospheric synoptic eddies and fronts | gulf stream rings | gulf stream rings | hurricanes | hurricanes | surface and internal gravity waves | surface and internal gravity waves | tides | tides | shallow water gravity waves | shallow water gravity waves | deep water gravity waves | deep water gravity waves | internal gravity waves | internal gravity waves | large-scale motions | large-scale motions | rotating earth | rotating earth | Rossby waves | Rossby waves | planetary scale motions | planetary scale motions | baroclinic instability | baroclinic instability | midlatitude storms | midlatitude storms | equatorial atmosphere | equatorial atmosphere | equatorial ocean | equatorial ocean | southern oscillation | southern oscillation | tropical cyclones | tropical cyclones | typhoons | typhoons

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.950 Atmospheric and Oceanic Modeling (MIT) 12.950 Atmospheric and Oceanic Modeling (MIT)

Description

The numerical methods, formulation and parameterizations used in models of the circulation of the atmosphere and ocean will be described in detail. Widely used numerical methods will be the focus but we will also review emerging concepts and new methods. The numerics underlying a hierarchy of models will be discussed, ranging from simple GFD models to the high-end GCMs. In the context of ocean GCMs, we will describe parameterization of geostrophic eddies, mixing and the surface and bottom boundary layers. In the atmosphere, we will review parameterizations of convection and large scale condensation, the planetary boundary layer and radiative transfer. The numerical methods, formulation and parameterizations used in models of the circulation of the atmosphere and ocean will be described in detail. Widely used numerical methods will be the focus but we will also review emerging concepts and new methods. The numerics underlying a hierarchy of models will be discussed, ranging from simple GFD models to the high-end GCMs. In the context of ocean GCMs, we will describe parameterization of geostrophic eddies, mixing and the surface and bottom boundary layers. In the atmosphere, we will review parameterizations of convection and large scale condensation, the planetary boundary layer and radiative transfer.

Subjects

numerical methods | numerical methods | formulation | formulation | parameterizations | parameterizations | models of the circulation of the atmosphere and ocean | models of the circulation of the atmosphere and ocean | numerics underlying a hierarchy of models | numerics underlying a hierarchy of models | simple GFD models | simple GFD models | high-end GCMs | high-end GCMs | ocean GCMs | ocean GCMs | parameterization of geostrophic eddies | parameterization of geostrophic eddies | mixing | mixing | surface and bottom boundary layers | surface and bottom boundary layers | atmosphere | atmosphere | parameterizations of convection | parameterizations of convection | large scale condensation | large scale condensation | planetary boundary layer | planetary boundary layer | radiative transfer | radiative transfer | finite difference method | finite difference method | Spatial discretization | Spatial discretization | numerical dispersion | numerical dispersion | Series expansion | Series expansion | Time-stepping | Time-stepping | Space-time discretization | Space-time discretization | Shallow water dynamics | Shallow water dynamics | Barotropic models | Barotropic models | Quasi-geostrophic equations | Quasi-geostrophic equations | Quasi-geostrophic models | Quasi-geostrophic models | Eddy parameterization | Eddy parameterization | Vertical coordinates | Vertical coordinates | primitive equations | primitive equations | Boundary layer parameterizations | Boundary layer parameterizations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.990 Prediction and Predictability in the Atmosphere and Oceans (MIT) 12.990 Prediction and Predictability in the Atmosphere and Oceans (MIT)

Description

Forecasting is the ultimate form of model validation. But even if a perfect model is in hand, imperfect forecasts are likely. This course will cover the factors that limit our ability to produce good forecasts, will show how the quality of forecasts can be gauged a priori (predicting our ability to predict!), and will cover the state of the art in operational atmosphere and ocean forecasting systems. Forecasting is the ultimate form of model validation. But even if a perfect model is in hand, imperfect forecasts are likely. This course will cover the factors that limit our ability to produce good forecasts, will show how the quality of forecasts can be gauged a priori (predicting our ability to predict!), and will cover the state of the art in operational atmosphere and ocean forecasting systems.

Subjects

Forecasting | Forecasting | model validation | model validation | prediction quality | prediction quality | operational atmosphere and ocean forecasting systems | operational atmosphere and ocean forecasting systems | limiting factors | limiting factors | prediction | prediction | operational atmosphere forecasting systems | operational atmosphere forecasting systems | ocean forecasting systems | ocean forecasting systems | chaos | chaos | probabilistic forecasting | probabilistic forecasting | data assimilation | data assimilation | adaptive observations | adaptive observations | model error | model error | attractors | attractors | dimensions | dimensions | sensitive dependence | sensitive dependence | initial conditions | initial conditions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.011 Introduction to Ocean Science and Engineering (MIT)

Description

This course is an introduction to the fundamental aspects of science and engineering necessary for exploring, observing, and utilizing the oceans. Hands-on projects focus on instrumentation in the marine environment and the design of ocean observatories for ocean monitoring and exploration. Topics include acoustics, sound speed and refraction, sounds generated by ships and marine animals, sonar systems and their principles of operation, hydrostatic behavior of floating and submerged bodies geared towards ocean vehicle design, stability of ocean vessels, and the application of instrumentation and electronics in the marine environment. Students work with sensor systems and deploy them in the field to gather and analyze real world data.

Subjects

oceanography | physical oceanography | ocean circulation | geostrophic flow | surface wave | wave velocity | propagation phenomena | ocean acoustics | sonar | submarine | submersible | marine | marine science | ship | boat | marine animal | undersea | ROV | current | vortex | turbulence

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.682 Acoustical Oceanography (MIT) 2.682 Acoustical Oceanography (MIT)

Description

This course will begin with brief overview of what important current research topics are in oceanography (physical, geological, and biological) and how acoustics can be used as a tool to address them. Three typical examples are climate, bottom geology, and marine mammal behavior. Will then address the acoustic inverse problem, reviewing inverse methods (linear and nonlinear) and the combination of acoustical methods with other measurements as an integrated system. Last part of course will concentrate on specific case studies, taken from current research journals. This course is taught on campus at MIT and with simultaneous video at Woods Hole Oceanographic Institution. This course will begin with brief overview of what important current research topics are in oceanography (physical, geological, and biological) and how acoustics can be used as a tool to address them. Three typical examples are climate, bottom geology, and marine mammal behavior. Will then address the acoustic inverse problem, reviewing inverse methods (linear and nonlinear) and the combination of acoustical methods with other measurements as an integrated system. Last part of course will concentrate on specific case studies, taken from current research journals. This course is taught on campus at MIT and with simultaneous video at Woods Hole Oceanographic Institution.

Subjects

oceanography | oceanography | acoustics | acoustics | shallow water acoustics | shallow water acoustics | acoustical oceanography | acoustical oceanography | WHOI | WHOI

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

PE.210 SCUBA (MIT) PE.210 SCUBA (MIT)

Description

Includes audio/video content: AV selected lectures, AV special element video. This course will thoroughly educate the successful student with the knowledge and skills necessary to be a certified beginning SCUBA diver. The prerequisite for the course is passing the MIT SCUBA swim test and demonstrating a "comfort level" in the water. At the end of the class, students will attempt to pass the certification exam to become certified divers. The class is taught in two parts each week: a classroom session and a pool session. The classroom sessions along with the reading material will provide the student with the knowledge necessary to pass the written exam. At the pool, the water skills are taught in progressions that build on the previous skills, making the difficult skills seem easy. Includes audio/video content: AV selected lectures, AV special element video. This course will thoroughly educate the successful student with the knowledge and skills necessary to be a certified beginning SCUBA diver. The prerequisite for the course is passing the MIT SCUBA swim test and demonstrating a "comfort level" in the water. At the end of the class, students will attempt to pass the certification exam to become certified divers. The class is taught in two parts each week: a classroom session and a pool session. The classroom sessions along with the reading material will provide the student with the knowledge necessary to pass the written exam. At the pool, the water skills are taught in progressions that build on the previous skills, making the difficult skills seem easy.

Subjects

SCUBA | SCUBA | diving | diving | physics | physics | water | water | ocean | ocean | neutral buoyancy | neutral buoyancy | regulator | regulator | decompression | decompression | rescue | rescue | swim techniques | swim techniques | kick cycles | kick cycles | marine life | marine life | ocean environment | ocean environment | navigation | navigation | dive tables | dive tables | air consumption | air consumption | snorkeling | snorkeling | skin diving | skin diving | NAUI | NAUI

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

PE.210 SCUBA (MIT) PE.210 SCUBA (MIT)

Description

This course will thoroughly educate the successful student with the knowledge and skills necessary to be a certified beginning SCUBA diver. The prerequisite for the course is passing the MIT SCUBA swim test and demonstrating a "comfort level" in the water. At the end of the class, students will attempt to pass the certification exam to become certified divers. The class is taught in two parts each week: a classroom session and a pool session. The classroom sessions along with the reading material will provide the student with the knowledge necessary to pass the written exam. At the pool, the water skills are taught in progressions that build on the previous skills, making the difficult skills seem easy. This course will thoroughly educate the successful student with the knowledge and skills necessary to be a certified beginning SCUBA diver. The prerequisite for the course is passing the MIT SCUBA swim test and demonstrating a "comfort level" in the water. At the end of the class, students will attempt to pass the certification exam to become certified divers. The class is taught in two parts each week: a classroom session and a pool session. The classroom sessions along with the reading material will provide the student with the knowledge necessary to pass the written exam. At the pool, the water skills are taught in progressions that build on the previous skills, making the difficult skills seem easy.

Subjects

SCUBA | SCUBA | diving | diving | physics | physics | water | water | ocean | ocean | neutral buoyancy | neutral buoyancy | regulator | regulator | decompression | decompression | rescue | rescue | swim techniques | swim techniques | kick cycles | kick cycles | marine life | marine life | ocean environment | ocean environment | navigation | navigation | dive tables | dive tables | air consumption | air consumption | snorkeling | snorkeling | skin diving | skin diving | NAUI | NAUI

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT)

Description

This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. File decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site.

Subjects

meteorology | climate | oceanography | Eulerian and Lagrangian kinematics | mass | momentum | energy | Vorticity | divergence Scaling | geostrophic approximation | Ekman layers | Vortex motion | fluid dynamics | atmospheric science | physical oceanography | ocean engineering | oceans | fluid flow | conservation equations | vortex flows | circulation | Earth | rotation | GFD kinematics | waves | Eulerian kinematics | Lagrangian kinematics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Artist's Concept of Seasat-A Artist's Concept of Seasat-A

Description

Subjects

ocean | ocean | earth | earth | challenger | challenger | oceanography | oceanography | atlasagena | atlasagena | seasata | seasata

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Two great ships, side by side Two great ships, side by side

Description

Subjects

mauretania | mauretania | turbinia | turbinia | vessel | vessel | historic | historic | important | important | shiplaunch | shiplaunch | ships | ships | shipbuilding | shipbuilding | tyneside | tyneside | tyneandwear | tyneandwear | rivertyne | rivertyne | northeastengland | northeastengland | oceanliner | oceanliner | passengership | passengership | wallsend | wallsend | swanhunterwighamrichardson | swanhunterwighamrichardson | shipyard | shipyard | cunardline | cunardline | industrialheritage | industrialheritage | industry | industry | maritimeheritage | maritimeheritage | rivers | rivers | fantastic | fantastic | interesting | interesting | wonderful | wonderful | unusual | unusual | majestic | majestic | 1907 | 1907 | greatoceanliner | greatoceanliner | sky | sky | cloud | cloud | bank | bank | buildings | buildings | row | row | wall | wall | roof | roof | chimney | chimney | cylinder | cylinder | smoke | smoke | mast | mast | deck | deck | cabin | cabin | boat | boat | rail | rail | calm | calm | water | water | daylight | daylight | blackandwhitephotograph | blackandwhitephotograph | abstract | abstract | digitalimage | digitalimage | northeastofengland | northeastofengland | unitedkingdom | unitedkingdom | grain | grain | mark | mark | transportation | transportation | shipbuildingheritage | shipbuildingheritage | production | production | construction | construction | development | development | structure | structure | frame | frame | rope | rope | wire | wire | blur | blur | transport | transport | surreal | surreal | archives | archives | artanddesign | artanddesign | design | design | vent | vent | metal | metal | porthole | porthole | glass | glass | crane | crane | river | river

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Exposição do Mundo Português (1940), Lisboa, Portugal Exposição do Mundo Português (1940), Lisboa, Portugal

Description

Subjects

fundaçãocaloustegulbenkian | fundaçãocaloustegulbenkian | gulbenkian | gulbenkian | bibliotecadearte | bibliotecadearte | biblioteca | biblioteca | arte | arte | márionovais | márionovais | novais | novais | exposiçãodomundoportuguês | exposiçãodomundoportuguês | exposição | exposição | mundo | mundo | português | português | 1940 | 1940 | pavilhãodosportuguesesnomundo | pavilhãodosportuguesesnomundo | pavilhão | pavilhão | portugueses | portugueses | saladaoceania | saladaoceania | sala | sala | oceania | oceania | impériocolonialportuguês | impériocolonialportuguês | império | império | colonial | colonial | feitorias | feitorias | expansão | expansão | fécatólica | fécatólica | | | católica | católica | arquitectura | arquitectura | c | c | cottinellitelmo | cottinellitelmo | cottinelli | cottinelli | telmo | telmo | lisboa | lisboa | belém | belém

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=26577438@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology). This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | and mineralogical changes | geochemical | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | climate change | climate change | marine records | marine records | ice core records | ice core records | continental records | continental records | paleoceanographic data | paleoceanographic data | statistics | statistics | factor analysis | factor analysis | time series analysis | time series analysis | simple climatology | simple climatology | geochemical changes | geochemical changes | mineralogical changes | mineralogical changes | glacial cycles | glacial cycles | intergalacial cycles | intergalacial cycles | earth-surface environment | earth-surface environment | environmental history | environmental history

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.853 Computational Ocean Acoustics (MIT) 13.853 Computational Ocean Acoustics (MIT)

Description

This course examines wave equations for fluid and visco-elastic media, wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides, and Wavenumber Integration and Normal Mode methods for propagation in plane-stratified media. Also covered are Seismo-Acoustic modeling of seabeds and ice covers, seismic interface and surface waves in a stratified seabed, Parabolic Equation and Coupled Mode approaches to propagation in range-dependent ocean waveguides, numerical modeling of target scattering and reverberation clutter in ocean waveguides, and ocean ambient noise modeling. Students develop propagation models using all the numerical approaches relevant to state-of-the-art acoustic research. This course examines wave equations for fluid and visco-elastic media, wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides, and Wavenumber Integration and Normal Mode methods for propagation in plane-stratified media. Also covered are Seismo-Acoustic modeling of seabeds and ice covers, seismic interface and surface waves in a stratified seabed, Parabolic Equation and Coupled Mode approaches to propagation in range-dependent ocean waveguides, numerical modeling of target scattering and reverberation clutter in ocean waveguides, and ocean ambient noise modeling. Students develop propagation models using all the numerical approaches relevant to state-of-the-art acoustic research.

Subjects

Wave equations | Wave equations | fluid and visco-elastic media | fluid and visco-elastic media | Wave-theory formulations | Wave-theory formulations | acoustic source radiation | acoustic source radiation | seismo-acoustic propagation | seismo-acoustic propagation | stratified ocean waveguides | stratified ocean waveguides | Wavenumber Integration | Wavenumber Integration | Normal Mode | Normal Mode | propagation in plane-stratified media | propagation in plane-stratified media | Seismo-Acoustic modeling | Seismo-Acoustic modeling | Seismic interface | Seismic interface | surface waves | surface waves | stratified seabed | stratified seabed | Parabolic Equation | Parabolic Equation | Coupled Mode | Coupled Mode | range-dependent ocean waveguides | range-dependent ocean waveguides | Numerical modeling | Numerical modeling | target scattering | target scattering | reverberation clutter | reverberation clutter | Ocean ambient noise modeling | Ocean ambient noise modeling | Fluid media | Fluid media | visco-elastic media | visco-elastic media | plane-stratified media | plane-stratified media | ice covers | ice covers | 2.068 | 2.068

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.068 Computational Ocean Acoustics (13.853) (MIT) 2.068 Computational Ocean Acoustics (13.853) (MIT)

Description

This course examines wave equations for fluid and visco-elastic media, wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides, and Wavenumber Integration and Normal Mode methods for propagation in plane-stratified media. Also covered are Seismo-Acoustic modeling of seabeds and ice covers, seismic interface and surface waves in a stratified seabed, Parabolic Equation and Coupled Mode approaches to propagation in range-dependent ocean waveguides, numerical modeling of target scattering and reverberation clutter in ocean waveguides, and ocean ambient noise modeling. Students develop propagation models using all the numerical approaches relevant to state-of-the-art acoustic research. This course was originally offered in Course 13 ( This course examines wave equations for fluid and visco-elastic media, wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides, and Wavenumber Integration and Normal Mode methods for propagation in plane-stratified media. Also covered are Seismo-Acoustic modeling of seabeds and ice covers, seismic interface and surface waves in a stratified seabed, Parabolic Equation and Coupled Mode approaches to propagation in range-dependent ocean waveguides, numerical modeling of target scattering and reverberation clutter in ocean waveguides, and ocean ambient noise modeling. Students develop propagation models using all the numerical approaches relevant to state-of-the-art acoustic research. This course was originally offered in Course 13 (

Subjects

Wave equations | Wave equations | fluid and visco-elastic media | fluid and visco-elastic media | Wave-theory formulations | Wave-theory formulations | acoustic source radiation | acoustic source radiation | seismo-acoustic propagation | seismo-acoustic propagation | stratified ocean waveguides | stratified ocean waveguides | Wavenumber Integration | Wavenumber Integration | Normal Mode | Normal Mode | propagation in plane-stratified media | propagation in plane-stratified media | Seismo-Acoustic modeling | Seismo-Acoustic modeling | Seismic interface | Seismic interface | surface waves | surface waves | stratified seabed | stratified seabed | Parabolic Equation | Parabolic Equation | Coupled Mode | Coupled Mode | range-dependent ocean waveguides | range-dependent ocean waveguides | Numerical modeling | Numerical modeling | target scattering | target scattering | reverberation clutter | reverberation clutter | Ocean ambient noise modeling | Ocean ambient noise modeling | Fluid media | Fluid media | visco-elastic media | visco-elastic media | plane-stratified media | plane-stratified media | ice covers | ice covers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.00 Introduction to Ocean Science and Technology (MIT)

Description

Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.Technical RequirementsAny number of software tools can be used to import the .dat files found on this course site. Please refer to the course materials for any specific i

Subjects

Physical oceanography | | major ocean circulations | | geostrophic flows | | Surface waves | | wave velocities | | propagation phenomena | | ocean acoustics | | sonar

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata