Searching for oceanography : 56 results found | RSS Feed for this search

1 2

2.682 Acoustical Oceanography (MIT) 2.682 Acoustical Oceanography (MIT)

Description

This course will begin with brief overview of what important current research topics are in oceanography (physical, geological, and biological) and how acoustics can be used as a tool to address them. Three typical examples are climate, bottom geology, and marine mammal behavior. Will then address the acoustic inverse problem, reviewing inverse methods (linear and nonlinear) and the combination of acoustical methods with other measurements as an integrated system. Last part of course will concentrate on specific case studies, taken from current research journals. This course is taught on campus at MIT and with simultaneous video at Woods Hole Oceanographic Institution. This course will begin with brief overview of what important current research topics are in oceanography (physical, geological, and biological) and how acoustics can be used as a tool to address them. Three typical examples are climate, bottom geology, and marine mammal behavior. Will then address the acoustic inverse problem, reviewing inverse methods (linear and nonlinear) and the combination of acoustical methods with other measurements as an integrated system. Last part of course will concentrate on specific case studies, taken from current research journals. This course is taught on campus at MIT and with simultaneous video at Woods Hole Oceanographic Institution.

Subjects

oceanography | oceanography | acoustics | acoustics | shallow water acoustics | shallow water acoustics | acoustical oceanography | acoustical oceanography | WHOI | WHOI

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.744 Marine Isotope Chemistry (MIT) 12.744 Marine Isotope Chemistry (MIT)

Description

The objective of this course is to develop an understanding of principles of marine isotope geochemistry, its systematics, and its application to the study of the behavior and history of the oceans within the earth system. The emphasis is on developing the underlying concepts and theory as well as proficiency in working with practical isotope systems. The course is divided into four sections: nuclear systematics, Earth formation and evolution, stable isotopes, and applications to the ocean system. The objective of this course is to develop an understanding of principles of marine isotope geochemistry, its systematics, and its application to the study of the behavior and history of the oceans within the earth system. The emphasis is on developing the underlying concepts and theory as well as proficiency in working with practical isotope systems. The course is divided into four sections: nuclear systematics, Earth formation and evolution, stable isotopes, and applications to the ocean system.

Subjects

oceanography | oceanography | chemical oceanography | chemical oceanography | isotope geochemistry | isotope geochemistry | geochemistry | geochemistry | marine science | marine science | isotopes | isotopes | radiocarbon | radiocarbon | radioactive decay | radioactive decay | radiometric dating | radiometric dating | mass spectrometry | mass spectrometry | isotope fractionation | isotope fractionation | fractionation | fractionation | water column | water column | whoi | whoi | woods hole | woods hole | earth science | earth science | atmosphere | atmosphere | ocean | ocean

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT) 12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT)

Description

This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. File decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site. This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. File decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site.

Subjects

meteorology | meteorology | climate | climate | oceanography | oceanography | Eulerian and Lagrangian kinematics | Eulerian and Lagrangian kinematics | mass | mass | momentum | momentum | energy | energy | Vorticity | Vorticity | divergence Scaling | divergence Scaling | geostrophic approximation | geostrophic approximation | Ekman layers | Ekman layers | Vortex motion | Vortex motion | fluid dynamics | fluid dynamics | atmospheric science | atmospheric science | physical oceanography | physical oceanography | ocean engineering | ocean engineering | oceans | oceans | fluid flow | fluid flow | conservation equations | conservation equations | vortex flows | vortex flows | circulation | circulation | Earth | Earth | rotation | rotation | GFD kinematics | GFD kinematics | waves | waves | Eulerian kinematics | Eulerian kinematics | Lagrangian kinematics | Lagrangian kinematics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.011 Introduction to Ocean Science and Engineering (MIT) 2.011 Introduction to Ocean Science and Engineering (MIT)

Description

This course is an introduction to the fundamental aspects of science and engineering necessary for exploring, observing, and utilizing the oceans. Hands-on projects focus on instrumentation in the marine environment and the design of ocean observatories for ocean monitoring and exploration. Topics include acoustics, sound speed and refraction, sounds generated by ships and marine animals, sonar systems and their principles of operation, hydrostatic behavior of floating and submerged bodies geared towards ocean vehicle design, stability of ocean vessels, and the application of instrumentation and electronics in the marine environment. Students work with sensor systems and deploy them in the field to gather and analyze real world data. This course is an introduction to the fundamental aspects of science and engineering necessary for exploring, observing, and utilizing the oceans. Hands-on projects focus on instrumentation in the marine environment and the design of ocean observatories for ocean monitoring and exploration. Topics include acoustics, sound speed and refraction, sounds generated by ships and marine animals, sonar systems and their principles of operation, hydrostatic behavior of floating and submerged bodies geared towards ocean vehicle design, stability of ocean vessels, and the application of instrumentation and electronics in the marine environment. Students work with sensor systems and deploy them in the field to gather and analyze real world data.

Subjects

oceanography | oceanography | physical oceanography | physical oceanography | ocean circulation | ocean circulation | geostrophic flow | geostrophic flow | surface wave | surface wave | wave velocity | wave velocity | propagation phenomena | propagation phenomena | ocean acoustics | ocean acoustics | sonar | sonar | submarine | submarine | submersible | submersible | marine | marine | marine science | marine science | ship | ship | boat | boat | marine animal | marine animal | undersea | undersea | ROV | ROV | current | current | vortex | vortex | turbulence | turbulence

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT) 12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT)

Description

This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist. This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.

Subjects

meteorology | meteorology | climate | climate | oceanography | oceanography | Eulerian and Lagrangian kinematics | Eulerian and Lagrangian kinematics | mass | mass | momentum | momentum | energy | energy | Vorticity | Vorticity | divergence Scaling | divergence Scaling | geostrophic approximation | geostrophic approximation | Ekman layers | Ekman layers | Vortex motion | Vortex motion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.011 Introduction to Ocean Science and Engineering (MIT)

Description

This course is an introduction to the fundamental aspects of science and engineering necessary for exploring, observing, and utilizing the oceans. Hands-on projects focus on instrumentation in the marine environment and the design of ocean observatories for ocean monitoring and exploration. Topics include acoustics, sound speed and refraction, sounds generated by ships and marine animals, sonar systems and their principles of operation, hydrostatic behavior of floating and submerged bodies geared towards ocean vehicle design, stability of ocean vessels, and the application of instrumentation and electronics in the marine environment. Students work with sensor systems and deploy them in the field to gather and analyze real world data.

Subjects

oceanography | physical oceanography | ocean circulation | geostrophic flow | surface wave | wave velocity | propagation phenomena | ocean acoustics | sonar | submarine | submersible | marine | marine science | ship | boat | marine animal | undersea | ROV | current | vortex | turbulence

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.742 Marine Chemistry (MIT) 12.742 Marine Chemistry (MIT)

Description

Includes audio/video content: AV selected lectures. This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers. Includes audio/video content: AV selected lectures. This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers.

Subjects

chemical oceanography | chemical oceanography | biogeochemical cycling | biogeochemical cycling | water column processes | water column processes | ocean particles | ocean particles | seawater composition | seawater composition | ocean particle transport | ocean particle transport | carbon | carbon | oxygen | oxygen | nitrogen | nitrogen | phosphorus | phosphorus | sulfur | sulfur | carbon dioxide | carbon dioxide | sediment chemistry | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT)

Description

This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. File decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site.

Subjects

meteorology | climate | oceanography | Eulerian and Lagrangian kinematics | mass | momentum | energy | Vorticity | divergence Scaling | geostrophic approximation | Ekman layers | Vortex motion | fluid dynamics | atmospheric science | physical oceanography | ocean engineering | oceans | fluid flow | conservation equations | vortex flows | circulation | Earth | rotation | GFD kinematics | waves | Eulerian kinematics | Lagrangian kinematics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Artist's Concept of Seasat-A Artist's Concept of Seasat-A

Description

Subjects

ocean | ocean | earth | earth | challenger | challenger | oceanography | oceanography | atlasagena | atlasagena | seasata | seasata

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.467 Research Seminar in Deep Sea Archaeology (MIT) STS.467 Research Seminar in Deep Sea Archaeology (MIT)

Description

STS.467 examines the intellectual foundations of archaeology in the deep sea. The course explores the current convergence of oceanography, archaeology, and engineering which allows scientists to discover, survey, and excavate shipwrecks in deep water with robots and submarines. The course seeks to address the following questions: How are new devices best employed for archaeological work? How do new capabilities (e.g. higher frequencies, higher resolution, all digital data output) change operations plans and research designs? What new technologies will be required? Area studies focus on the Aegean in Minoan times and western Sicily during Phoenician, Greek, and Roman hegemony. STS.467 examines the intellectual foundations of archaeology in the deep sea. The course explores the current convergence of oceanography, archaeology, and engineering which allows scientists to discover, survey, and excavate shipwrecks in deep water with robots and submarines. The course seeks to address the following questions: How are new devices best employed for archaeological work? How do new capabilities (e.g. higher frequencies, higher resolution, all digital data output) change operations plans and research designs? What new technologies will be required? Area studies focus on the Aegean in Minoan times and western Sicily during Phoenician, Greek, and Roman hegemony.

Subjects

archaeology | archaeology | deep sea archaeology | deep sea archaeology | oceanography | oceanography | survey | survey | new technologies | new technologies | excavation | excavation | shipwreck | shipwreck | robots | robots | submarines | submarines | Aegean | Aegean | Minoan | Minoan | Sicily | Sicily | Phoenician | Phoenician | Greek | Greek | Roman | Roman

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-STS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.011 Introduction to Ocean Science and Technology (13.00) (MIT) 2.011 Introduction to Ocean Science and Technology (13.00) (MIT)

Description

Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.00. In 2005, ocean engineering subjects became part of Course 2 (Department of Mec Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.00. In 2005, ocean engineering subjects became part of Course 2 (Department of Mec

Subjects

Physical oceanography | | Physical oceanography | | major ocean circulations | | major ocean circulations | | geostrophic flows | | geostrophic flows | | Surface waves | | Surface waves | | wave velocities | | wave velocities | | propagation phenomena | | propagation phenomena | | ocean acoustics | | ocean acoustics | | sonar | sonar

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.479J Water and Sanitation Infrastructure in Developing Countries (MIT) 11.479J Water and Sanitation Infrastructure in Developing Countries (MIT)

Description

This course deals with the principles of infrastructure planning in developing countries, with a focus on appropriate and sustainable technologies for water and sanitation. It also incorporates technical, socio-cultural, public health, and economic factors into the planning and design of water and sanitation systems. Upon completion, students will be able to plan simple, yet reliable, water supply and sanitation systems for developing countries that are compatible with local customs and available human and material resources. Graduate and upper division students from any department who are interested in international development at the grassroots level are encouraged to participate in this interdisciplinary subject. Acknowledgment This course was jointly developed by Earthea Nance and Sus This course deals with the principles of infrastructure planning in developing countries, with a focus on appropriate and sustainable technologies for water and sanitation. It also incorporates technical, socio-cultural, public health, and economic factors into the planning and design of water and sanitation systems. Upon completion, students will be able to plan simple, yet reliable, water supply and sanitation systems for developing countries that are compatible with local customs and available human and material resources. Graduate and upper division students from any department who are interested in international development at the grassroots level are encouraged to participate in this interdisciplinary subject. Acknowledgment This course was jointly developed by Earthea Nance and Sus

Subjects

chemical oceanography | chemical oceanography | biogeochemical cycling | biogeochemical cycling | water column processes | water column processes | ocean particles | ocean particles | seawater composition | seawater composition | ocean particle transport | ocean particle transport | carbon | carbon | oxygen | oxygen | nitrogen | nitrogen | phosphorus | phosphorus | sulfur | sulfur | carbon dioxide | carbon dioxide | sediment chemistry | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.744 Marine Isotope Chemistry (MIT)

Description

The objective of this course is to develop an understanding of principles of marine isotope geochemistry, its systematics, and its application to the study of the behavior and history of the oceans within the earth system. The emphasis is on developing the underlying concepts and theory as well as proficiency in working with practical isotope systems. The course is divided into four sections: nuclear systematics, Earth formation and evolution, stable isotopes, and applications to the ocean system.

Subjects

oceanography | chemical oceanography | isotope geochemistry | geochemistry | marine science | isotopes | radiocarbon | radioactive decay | radiometric dating | mass spectrometry | isotope fractionation | fractionation | water column | whoi | woods hole | earth science | atmosphere | ocean

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

s Microscopic Flora

Description

The President of St John's College, Professor Maggie Snowling, in conversation with Dr Heather Bowman, a Fellow in Biological Sciences at St John's. They discuss Heather's research work as a biological oceanographer. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

biology | s | oceanography | earth sciences | phytoplankton | microbiology | plankton | s | oceanography | earth sciences | phytoplankton | microbiology | plankton

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129217/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Ironing The Ocean - exploring the ocean iron and carbon cycles aboard the RRS discovery in the south atlantic

Description

Gideon Henderson, Professor of Earth Sciences and fellow of University College, gives a talk on his research on iron content in the atlantic ocean and its necessity for life in the ocean. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

science | ecology | oceanography | earth sciences | science | ecology | oceanography | earth sciences | 2011-05-19

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129194/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Ironing The Ocean - exploring the ocean iron and carbon cycles aboard the RRS discovery in the south atlantic

Description

Gideon Henderson, Professor of Earth Sciences and fellow of University College, gives a talk on his research on iron content in the atlantic ocean and its necessity for life in the ocean. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

science | ecology | oceanography | earth sciences | science | ecology | oceanography | earth sciences | 2011-05-19

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129194/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.00 Introduction to Ocean Science and Technology (MIT) 13.00 Introduction to Ocean Science and Technology (MIT)

Description

Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.Technical RequirementsAny number of software tools can be used to import the .dat files found on this course site. Please refer to the course materials for any specific i Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.Technical RequirementsAny number of software tools can be used to import the .dat files found on this course site. Please refer to the course materials for any specific i

Subjects

Physical oceanography | | Physical oceanography | | major ocean circulations | | major ocean circulations | | geostrophic flows | | geostrophic flows | | Surface waves | | Surface waves | | wave velocities | | wave velocities | | propagation phenomena | | propagation phenomena | | ocean acoustics | | ocean acoustics | | sonar | sonar

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology). This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | and mineralogical changes | geochemical | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | climate change | climate change | marine records | marine records | ice core records | ice core records | continental records | continental records | paleoceanographic data | paleoceanographic data | statistics | statistics | factor analysis | factor analysis | time series analysis | time series analysis | simple climatology | simple climatology | geochemical changes | geochemical changes | mineralogical changes | mineralogical changes | glacial cycles | glacial cycles | intergalacial cycles | intergalacial cycles | earth-surface environment | earth-surface environment | environmental history | environmental history | Oxygen Isotope | Oxygen Isotope | Coral Reefs | Coral Reefs | Paleoceanography | Paleoceanography | Paleoclimatology | Paleoclimatology | Paleothermometry | Paleothermometry | Atmospheric Carbon Dioxide | Atmospheric Carbon Dioxide | Ocean Chemistry | Ocean Chemistry | Salinity | Salinity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology). This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | and mineralogical changes | geochemical | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | climate change | climate change | marine records | marine records | ice core records | ice core records | continental records | continental records | paleoceanographic data | paleoceanographic data | statistics | statistics | factor analysis | factor analysis | time series analysis | time series analysis | simple climatology | simple climatology | geochemical changes | geochemical changes | mineralogical changes | mineralogical changes | glacial cycles | glacial cycles | intergalacial cycles | intergalacial cycles | earth-surface environment | earth-surface environment | environmental history | environmental history | Oxygen Isotope | Oxygen Isotope | Coral Reefs | Coral Reefs | Paleoceanography | Paleoceanography | Paleoclimatology | Paleoclimatology | Paleothermometry | Paleothermometry | Atmospheric Carbon Dioxide | Atmospheric Carbon Dioxide | Ocean Chemistry | Ocean Chemistry | Salinity | Salinity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.746 Marine Organic Geochemistry (MIT) 12.746 Marine Organic Geochemistry (MIT)

Description

This class is designed to provide the student with a global to molecular-level perspective of organic matter cycling in the oceans and marine sediments. Topics include: Organic matter (C,N,P) composition, reactivity and budgets within, and fluxes through, major ocean reservoirs; microbial recycling pathways for organic matter; models of organic matter degradation and preservation; role of anoxia in organic matter burial; relationships between dissolved and particulate (sinking and suspended) organic matter; methods for characterization of sedimentary organic matter; and application of biological markers as tools in oceanography. Both structural and isotopic aspects are covered. This class is designed to provide the student with a global to molecular-level perspective of organic matter cycling in the oceans and marine sediments. Topics include: Organic matter (C,N,P) composition, reactivity and budgets within, and fluxes through, major ocean reservoirs; microbial recycling pathways for organic matter; models of organic matter degradation and preservation; role of anoxia in organic matter burial; relationships between dissolved and particulate (sinking and suspended) organic matter; methods for characterization of sedimentary organic matter; and application of biological markers as tools in oceanography. Both structural and isotopic aspects are covered.

Subjects

Marine | Marine | organic geochemistry | organic geochemistry | distribution | distribution | organic carbon | organic carbon | marine sediments | marine sediments | global | global | molecular-level perspective | molecular-level perspective | mineralization | mineralization | preservation | preservation | OC | OC | major reservoirs | major reservoirs | microbial recycling pathways | microbial recycling pathways | degradation | degradation | anoxia | anoxia | OC burial | OC burial | dissolved | dissolved | sedimentary organic matter | sedimentary organic matter | biological markers | biological markers | oceanography | oceanography

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.682 Acoustical Oceanography (MIT)

Description

This course will begin with brief overview of what important current research topics are in oceanography (physical, geological, and biological) and how acoustics can be used as a tool to address them. Three typical examples are climate, bottom geology, and marine mammal behavior. Will then address the acoustic inverse problem, reviewing inverse methods (linear and nonlinear) and the combination of acoustical methods with other measurements as an integrated system. Last part of course will concentrate on specific case studies, taken from current research journals. This course is taught on campus at MIT and with simultaneous video at Woods Hole Oceanographic Institution.

Subjects

oceanography | acoustics | shallow water acoustics | acoustical oceanography | WHOI

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Curated collection of Marine Biology resources

Description

This is an evaluated collection of links to resources for learning and teaching subjects relating to Marine Biology. This forms part of the UK Centre for Bioscience OeRBITAL project.

Subjects

ukoer | oerbital | marine biology | oceanography | marine life | virtual rocky shore | Biological sciences | C000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The Cryosphere : Svalbard Virtual fieldclass

Description

This resource combines maps, photographs and video to provide a Virtual Fieldclass for Svalbard from the perspective of a Physical Geographer. The trip is split between Longyearbyen and the arctic science base at Ny-Alesund. The trip is supported by a detailed bibliography available for download.

Subjects

arctic | arctic sea-ice | climate change | cryosphere | earth sciences | environmental sciences | geography | geology | geesoer | oceanography | polar field stations | ukoer | virtual fieldclass | ny-alesund | longyearbyen | brogger peninsular | glaciers | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.00 Introduction to Ocean Science and Technology (MIT)

Description

Introductory subject for students majoring or minoring in ocean engineering and others desiring introductory knowledge in the field. Physical oceanography including distributions of salinity, temperature, and density, heat balance, major ocean circulations and geostrophic flows, and influence of wind stress. Surface waves including wave velocities, propagation phenomena, and descriptions of real sea waves. Acoustics in the ocean including influence of water properties on sound speed and refraction, sounds generated by ships and marine animals, fundamentals of sonar, types of sonar systems and their principles of operation.Technical RequirementsAny number of software tools can be used to import the .dat files found on this course site. Please refer to the course materials for any specific i

Subjects

Physical oceanography | | major ocean circulations | | geostrophic flows | | Surface waves | | wave velocities | | propagation phenomena | | ocean acoustics | | sonar

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The Cryosphere : Svalbard Virtual field class

Description

This resource combines maps, photographs and video to provide a Virtual Fieldclass for Svalbard from the perspective of a Physical Geographer. The trip is split between Longyearbyen and the arctic science base at Ny-Alesund. The trip is supported by a detailed bibliography available for download.

Subjects

arctic | arctic sea-ice | climate change | cryosphere | earth sciences | environmental sciences | geography | geology | geesoer | oceanography | polar field stations | ukoer | virtual fieldclass | longyearbyen | brogger peninsular | glaciers | ny-alesund | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata