Searching for operating system : 35 results found | RSS Feed for this search

1

Readme file for Real-Time Embedded Systems

Description

This readme file contains details of links to all the Real-Time Embedded Systems module's material held on Jorum and information about the module as well.

Subjects

ukoer | complete rate monotonic scheduling lecture | complete rate monotonic scheduling | complete rating monotonic scheduling lecture | complex rms scheduling lecture | complex rms scheduling | complex scheduling lecture | concurrency and determinism lecture | concurrency and determinism | concurrency lecture | concurrency | cyclic executives lecture | cyclic executives | cyclic scheduling lecture | cyclic scheduling | deadline monotonic scheduling lecture | deadline monotonic scheduling | determinism lecture | determinism | embedded real-time scheduling lecture | embedded real-time scheduling | embedded software development lecture | embedded software development practical | embedded software development quiz | embedded software development | embedded system lecture | embedded system modelling | embedded system | embedded systems lecture | embedded systems modeling lecture | embedded systems modeling quiz | embedded systems modelling lecture | embedded systems modelling quiz | embedded systems modelling | embedded systems | es chararcteristics | inter task communication lecture | inter task communication practical | inter task communication quiz | inter task communication | inter task communications lecture | inter task communications practical | inter task communications quiz | inter-task communications lecture | inter-task communications practical | inter-task communications quiz | inter-task communications | memory management lecture | memory management quiz | memory management | multi-tasking lecture | multi-tasking practical | multi-tasking quiz | multi-tasking | processing interrupts lecture | processing interrupts quiz | processing interrupts | real time embedded system quiz | real-time embedded system lecture | real-time embedded system practical | real-time embedded system quiz | real-time embedded system | real-time embedded systems lecture | real-time embedded systems practical | real-time embedded systems quiz | real-time embedded systems revision lecture | real-time embedded systems revision | real-time embedded systems | real-time operating system lecture | real-time operating system practical | real-time operating system quiz | real-time operating system | real-time operating systems lecture | real-time operating systems practical | real-time operating systems quiz | real-time operating systems | rtes lecture | rtes practical | rtes quiz | rtes | scheduling strategies lecture | scheduling strategies | scheduling strategy lecture | scheduling strategy | simple rate monotonic scheduling lecture | simple rate monotonic scheduling | simple real time system structure | simple real-time system structure lecture | es characteristics lecture | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.564 Information Technology I (MIT) 15.564 Information Technology I (MIT)

Description

Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed. Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed.

Subjects

developing-country governments; international | developing-country governments; international | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers | computers | future developments | future developments | networks | networks | distributed computing | distributed computing | programming languages | programming languages | firewall | firewall | e-business | e-business | computer architecture | computer architecture | operating | operating | software development | software development | database | database | user interface | user interface | telecommunication | telecommunication | data transmission | data transmission | local area network | local area network | wireless network | wireless network | internet | internet | world wide web | world wide web | digital security | digital security | architecture | architecture | data | data | transmission | transmission | wireless | wireless | interface | interface | user | user | software | software | development | development | programming | programming | languages | languages | distributed | distributed | computing | computing | LAN | LAN | local | local | area | area | future | future | digital | digital | security | security | technology | technology | information | information | management | management | systems | systems | relational | relational | graphical | graphical | interfaces | interfaces | client/server | client/server | enterprise | enterprise | applications | applications | cryptography | cryptography | services | services | Microsoft | Microsoft | Access | Access | Lotus Notes | Lotus Notes | processing | processing | memory | memory | I/O | I/O | CPU | CPU | OS | OS | hardware | hardware | compression | compression | SQL | SQL | queries | queries | design | design | WAN | WAN | wide | wide | Ethernet | Ethernet | packet-switched | packet-switched | peer-to-peer | peer-to-peer | WWW | WWW | public | public | key | key | mining | mining | warehousing | warehousing | concepts | concepts | conceptual | conceptual | modern computing | modern computing | information management | information management | operating systems | operating systems | relational database systems | relational database systems | graphical user interfaces | graphical user interfaces | client/server systems | client/server systems | enterprise applications | enterprise applications | web.internet services | web.internet services | Microsoft Access | Microsoft Access | database management systems | database management systems | information technology | information technology | telecommunications | telecommunications | eBusiness applications | eBusiness applications | client | client | servers | servers | wireless area network | wireless area network

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Real-Time Embedded Systems - Real-time operating systems

Description

This lecture forms part of the "Real-time operating systems" topic in the Real-Time Embedded Systems module.

Subjects

ukoer | real-time operating systems lecture | real-time operating system | real-time operating systems | real-time embedded systems | real-time embedded system | rtes | real-time operating system lecture | real-time embedded systems lecture | real-time embedded system lecture | rtes lecture | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Real-Time Embedded Systems - Real-time operating systems

Description

This quiz forms part of the "Real-time operating systems" topic in the Real-Time Embedded Systems module.

Subjects

ukoer | real-time operating systems quiz | real-time operating systems | real-time operating system | real-time embedded systems | real-time embedded system | rtes | real-time operating system quiz | real-time embedded systems quiz | real-time embedded system quiz | real time embedded system quiz | rtes quiz | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Real-Time Embedded Systems - Real-time operating systems

Description

This practical and code form part of the "Real-time operating systems" topic in the Real-Time Embedded Systems module.

Subjects

ukoer | real-time operating systems practical | real-time operating system | real-time operating systems | real-time embedded systems | real-time embedded system | rtes | real-time operating system practical | real-time embedded systems practical | real-time embedded system practical | rtes practical | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Real-Time Embedded Systems - Real-time operating systems

Description

This practical and code form part of the "Real-time operating systems" topic in the Real-Time Embedded Systems module.

Subjects

ukoer | real-time operating systems practical | real-time operating systems | real-time operating system | real-time embedded systems | real-time embedded system | rtes | real-time operating system practical | real-time embedded systems practical | real-time embedded system practical | rtes practical | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT) 6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment. 6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | network | computer security | computer security | security | security | cryptography | cryptography | secret-key | secret-key | public-key | public-key | digital signature | digital signature | authentication | authentication | identification | identification | intrusion detection | intrusion detection | virus | virus | operating system | operating system | software | software | protection | protection | electronic mail | electronic mail | email | email | electronic commerce | electronic commerce | electronic cash | electronic cash | firewall | firewall | computer | computer | digital | digital | signature | signature | electronic | electronic | cash | cash | commerce | commerce | mail | mail | operating | operating | system | system | intrustion | intrustion | detection | detection | distributed | distributed | physical | physical | discretionary | discretionary | mandatory | mandatory | access | access | control | control | biometrics | biometrics | information | information | flow | flow | models | models | covert | covert | channels | channels | integrity | integrity | logic | logic | voting | voting | risk | risk | assessment | assessment | secure | secure | web | web | browsers | browsers | architecture | architecture | engineering | engineering | certificates | certificates | multi-user computer systems | multi-user computer systems | distributed computer systems | distributed computer systems | physical security | physical security | discretionary access control | discretionary access control | mandatory access control | mandatory access control | information-flow models | information-flow models | covert channels | covert channels | integrity models | integrity models | elementary cryptography | elementary cryptography | authentication logic;electronic cash | authentication logic;electronic cash | viruses | viruses | firewalls | firewalls | electronic voting | electronic voting | risk assessment | risk assessment | secure web browsers | secure web browsers | network security | network security | architecture engineering | architecture engineering | digital signatures | digital signatures | authentication schemes | authentication schemes | identification schemes | identification schemes | formal models | formal models | secure operating systems | secure operating systems | software protection | software protection | electronic mail security | electronic mail security | World Wide Web | World Wide Web | ecommerce | ecommerce | email security | email security | www | www | payment protocols | payment protocols | authentication logic | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.858 Computer Systems Security (MIT) 6.858 Computer Systems Security (MIT)

Description

Includes audio/video content: AV lectures. 6.858 Computer Systems Security is a class about the design and implementation of secure computer systems. Lectures cover threat models, attacks that compromise security, and techniques for achieving security, based on recent research papers. Topics include operating system (OS) security, capabilities, information flow control, language security, network protocols, hardware security, and security in web applications. Includes audio/video content: AV lectures. 6.858 Computer Systems Security is a class about the design and implementation of secure computer systems. Lectures cover threat models, attacks that compromise security, and techniques for achieving security, based on recent research papers. Topics include operating system (OS) security, capabilities, information flow control, language security, network protocols, hardware security, and security in web applications.

Subjects

computer system design | computer system design | secure computer systems | secure computer systems | threat model | threat model | computer systems security | computer systems security | operating system | operating system | operating system security | operating system security | capabilities | capabilities | information flow control | information flow control | language security | language security | network protocols | network protocols | hardware security | hardware security | web | web | web application security | web application security | secure web server | secure web server | web application | web application

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.564 Information Technology I (MIT)

Description

Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed.

Subjects

developing-country governments; international | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers | future developments | networks | distributed computing | programming languages | firewall | e-business | computer architecture | operating | software development | database | user interface | telecommunication | data transmission | local area network | wireless network | internet | world wide web | digital security | architecture | data | transmission | wireless | interface | user | software | development | programming | languages | distributed | computing | LAN | local | area | future | digital | security | technology | information | management | systems | relational | graphical | interfaces | client/server | enterprise | applications | cryptography | services | Microsoft | Access | Lotus Notes | processing | memory | I/O | CPU | OS | hardware | compression | SQL | queries | design | WAN | wide | Ethernet | packet-switched | peer-to-peer | WWW | public | key | mining | warehousing | concepts | conceptual | modern computing | information management | operating systems | relational database systems | graphical user interfaces | client/server systems | enterprise applications | web.internet services | Microsoft Access | database management systems | information technology | telecommunications | eBusiness applications | client | servers | wireless area network

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.564 Information Technology I (MIT)

Description

Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed.

Subjects

developing-country governments; international | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers | future developments | networks | distributed computing | programming languages | firewall | e-business | computer architecture | operating | software development | database | user interface | telecommunication | data transmission | local area network | wireless network | internet | world wide web | digital security | architecture | data | transmission | wireless | interface | user | software | development | programming | languages | distributed | computing | LAN | local | area | future | digital | security | technology | information | management | systems | relational | graphical | interfaces | client/server | enterprise | applications | cryptography | services | Microsoft | Access | Lotus Notes | processing | memory | I/O | CPU | OS | hardware | compression | SQL | queries | design | WAN | wide | Ethernet | packet-switched | peer-to-peer | WWW | public | key | mining | warehousing | concepts | conceptual | modern computing | information management | operating systems | relational database systems | graphical user interfaces | client/server systems | enterprise applications | web.internet services | Microsoft Access | database management systems | information technology | telecommunications | eBusiness applications | client | servers | wireless area network

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Real-Time Embedded Systems - Real-time operating systems

Description

This quiz forms part of the "Real-time operating systems" topic in the Real-Time Embedded Systems module.

Subjects

ukoer | real-time operating systems quiz | real-time operating system | real-time operating systems | real-time embedded systems | real-time embedded system | rtes | real-time embedded systems quiz | real-time embedded system quiz | real time embedded system quiz | rtes quiz | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.564 Information Technology I (MIT)

Description

Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed.

Subjects

developing-country governments; international | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers | future developments | networks | distributed computing | programming languages | firewall | e-business | computer architecture | operating | software development | database | user interface | telecommunication | data transmission | local area network | wireless network | internet | world wide web | digital security | architecture | data | transmission | wireless | interface | user | software | development | programming | languages | distributed | computing | LAN | local | area | future | digital | security | technology | information | management | systems | relational | graphical | interfaces | client/server | enterprise | applications | cryptography | services | Microsoft | Access | Lotus Notes | processing | memory | I/O | CPU | OS | hardware | compression | SQL | queries | design | WAN | wide | Ethernet | packet-switched | peer-to-peer | WWW | public | key | mining | warehousing | concepts | conceptual | modern computing | information management | operating systems | relational database systems | graphical user interfaces | client/server systems | enterprise applications | web.internet services | Microsoft Access | database management systems | information technology | telecommunications | eBusiness applications | client | servers | wireless area network

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.828 Operating System Engineering (MIT) 6.828 Operating System Engineering (MIT)

Description

6.828 teaches the fundamentals of engineering operating systems. The following topics are studied in detail: virtual memory, kernel and user mode, system calls, threads, context switches, interrupts, interprocess communication, coordination of concurrent activities, and the interface between software and hardware. Most importantly, the interactions between these concepts are examined. The course is divided into two blocks; the first block introduces one operating system, UNIX® v6, in detail. The second block of lectures covers important operating systems concepts invented after UNIX® v6, which was introduced in 1976.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is req 6.828 teaches the fundamentals of engineering operating systems. The following topics are studied in detail: virtual memory, kernel and user mode, system calls, threads, context switches, interrupts, interprocess communication, coordination of concurrent activities, and the interface between software and hardware. Most importantly, the interactions between these concepts are examined. The course is divided into two blocks; the first block introduces one operating system, UNIX® v6, in detail. The second block of lectures covers important operating systems concepts invented after UNIX® v6, which was introduced in 1976.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is req

Subjects

operating system | operating system | OS | OS | UNIX | UNIX | virtual memory | virtual memory | threads | threads | context switches | context switches | kernels | kernels | interrupts | interrupts | system calls | system calls | interprocess communication | interprocess communication | C | C | x86 assembly | x86 assembly | programming | programming | computer engineering | computer engineering | kernal mode | kernal mode | user mode | user mode | concurrent activities | concurrent activities | interfaces | interfaces | software/hardware interface | software/hardware interface | boot loaders | boot loaders | memory management | memory management | processes switching | processes switching | fork | fork | IPC | IPC | file systems | file systems | shells | shells | Exec | Exec

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.033 Computer System Engineering (MIT) 6.033 Computer System Engineering (MIT)

Description

Includes audio/video content: AV lectures. This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. Case studies of working systems and readings from the current literature provide comparisons and contrasts. Two design projects are required, and students engage in extensive written communication exercises. Includes audio/video content: AV lectures. This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. Case studies of working systems and readings from the current literature provide comparisons and contrasts. Two design projects are required, and students engage in extensive written communication exercises.

Subjects

computer systems | computer systems | systems design | systems design | complexity | complexity | abstractions | abstractions | modularity | modularity | client server | client server | operating system | operating system | performance | performance | networks | networks | layering | layering | routing | routing | congestion control | congestion control | reliability | reliability | atomicity | atomicity | isolation | isolation | security | security | authentication | authentication | cryptography | cryptography | therac 25 | therac 25 | unix | unix | mapreduce | mapreduce | architecture of complexity | architecture of complexity | trusting trust | trusting trust | computer system design | computer system design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.566 Information Technology as an Integrating Force in Manufacturing (MIT) 15.566 Information Technology as an Integrating Force in Manufacturing (MIT)

Description

Includes audio/video content: AV selected lectures. In virtually every industry and every firm, information technology is driving change, creating opportunities and challenges. Leaders who don't understand at least the fundamentals of information systems will be at a strategic disadvantage. This course provides broad coverage of technology concepts and trends underlying current and future developments in information technology, and fundamental principles for the effective use of computer-based information systems. There will be a special emphasis on manufacturing. Information Systems topics that will be covered include networks and distributed computing, including the World Wide Web, hardware and operating systems, software development tools and processes, relational databases, security a Includes audio/video content: AV selected lectures. In virtually every industry and every firm, information technology is driving change, creating opportunities and challenges. Leaders who don't understand at least the fundamentals of information systems will be at a strategic disadvantage. This course provides broad coverage of technology concepts and trends underlying current and future developments in information technology, and fundamental principles for the effective use of computer-based information systems. There will be a special emphasis on manufacturing. Information Systems topics that will be covered include networks and distributed computing, including the World Wide Web, hardware and operating systems, software development tools and processes, relational databases, security a

Subjects

information technology | information technology | business | business | manufacturing | manufacturing | strategy | strategy | information systems | information systems | networks | networks | distributed computing | distributed computing | software development | software development | web | web | enterprise application | enterprise application | security | security | database | database | operating system | operating system | electronic commerce | electronic commerce | business to business | business to business

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | computer security | security | cryptography | secret-key | public-key | digital signature | authentication | identification | intrusion detection | virus | operating system | software | protection | electronic mail | email | electronic commerce | electronic cash | firewall | computer | digital | signature | electronic | cash | commerce | mail | operating | system | intrustion | detection | distributed | physical | discretionary | mandatory | access | control | biometrics | information | flow | models | covert | channels | integrity | logic | voting | risk | assessment | secure | web | browsers | architecture | engineering | certificates | multi-user computer systems | distributed computer systems | physical security | discretionary access control | mandatory access control | information-flow models | covert channels | integrity models | elementary cryptography | authentication logic;electronic cash | viruses | firewalls | electronic voting | risk assessment | secure web browsers | network security | architecture engineering | digital signatures | authentication schemes | identification schemes | formal models | secure operating systems | software protection | electronic mail security | World Wide Web | ecommerce | email security | www | payment protocols | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | computer security | security | cryptography | secret-key | public-key | digital signature | authentication | identification | intrusion detection | virus | operating system | software | protection | electronic mail | email | electronic commerce | electronic cash | firewall | computer | digital | signature | electronic | cash | commerce | mail | operating | system | intrustion | detection | distributed | physical | discretionary | mandatory | access | control | biometrics | information | flow | models | covert | channels | integrity | logic | voting | risk | assessment | secure | web | browsers | architecture | engineering | certificates | multi-user computer systems | distributed computer systems | physical security | discretionary access control | mandatory access control | information-flow models | covert channels | integrity models | elementary cryptography | authentication logic;electronic cash | viruses | firewalls | electronic voting | risk assessment | secure web browsers | network security | architecture engineering | digital signatures | authentication schemes | identification schemes | formal models | secure operating systems | software protection | electronic mail security | World Wide Web | ecommerce | email security | www | payment protocols | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Editing files and Emacs Editing files and Emacs

Description

Dr Gail Hopkins, Computer Science Dr Gail Hopkins, Computer Science This emacs lecture is given as part of the course G51UST, Unix Software Tools. The course gives an introduction to the Unix operating system. It teaches students how to use the Command Line Interface that is part of Unix and also teaches them how to write shell, sed and awk. In doing so the course covers the use of editors such as Emacs and vi with which the students can write their scripts. It is presented in 3 formats: * Screencast (video of the lecturer and presentation slides) * Audiocast (audio of the lecturer and presentation slides) * MP3 (Audio only) Suitable for study at undergraduate level 1. As taught Spring Semester 2010. Dr Gail Hopkins, Computer Science This emacs lecture is given as part of the course G51UST, Unix Software Tools. The course gives an introduction to the Unix operating system. It teaches students how to use the Command Line Interface that is part of Unix and also teaches them how to write shell, sed and awk. In doing so the course covers the use of editors such as Emacs and vi with which the students can write their scripts. It is presented in 3 formats: * Screencast (video of the lecturer and presentation slides) * Audiocast (audio of the lecturer and presentation slides) * MP3 (Audio only) Suitable for study at undergraduate level 1. As taught Spring Semester 2010. Dr Gail Hopkins, Computer Science

Subjects

UNow | UNow | emacs | emacs | unix operating system | unix operating system | g51ust | g51ust | unix software tools | unix software tools | command line interface | command line interface | shell | shell | sed | sed | awk | awk | ukoer | ukoer | scripts | scripts

License

Except for third party materials (materials owned by someone other than The University of Nottingham) and where otherwise indicated, the copyright in the content provided in this resource is owned by The University of Nottingham and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike UK 2.0 Licence (BY-NC-SA) Except for third party materials (materials owned by someone other than The University of Nottingham) and where otherwise indicated, the copyright in the content provided in this resource is owned by The University of Nottingham and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike UK 2.0 Licence (BY-NC-SA)

Site sourced from

http://unow.nottingham.ac.uk/rss.ashx

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.828 Operating System Engineering (MIT) 6.828 Operating System Engineering (MIT)

Description

This course studies fundamental design and implementation ideas in the engineering of operating systems. Lectures are based on a study of UNIX and research papers. Topics include virtual memory, threads, context switches, kernels, interrupts, system calls, interprocess communication, coordination, and the interaction between software and hardware. Individual laboratory assignments involve implementation of a small operating system in C, with some x86 assembly. This course studies fundamental design and implementation ideas in the engineering of operating systems. Lectures are based on a study of UNIX and research papers. Topics include virtual memory, threads, context switches, kernels, interrupts, system calls, interprocess communication, coordination, and the interaction between software and hardware. Individual laboratory assignments involve implementation of a small operating system in C, with some x86 assembly.

Subjects

operating system | operating system | OS | OS | UNIX | UNIX | virtual memory | virtual memory | threads | threads | context switches | context switches | kernels | kernels | interrupts | interrupts | system calls | system calls | interprocess communication | interprocess communication | C | C | x86 assembly | x86 assembly | programming | programming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | computer security | security | cryptography | secret-key | public-key | digital signature | authentication | identification | intrusion detection | virus | operating system | software | protection | electronic mail | email | electronic commerce | electronic cash | firewall | computer | digital | signature | electronic | cash | commerce | mail | operating | system | intrustion | detection | distributed | physical | discretionary | mandatory | access | control | biometrics | information | flow | models | covert | channels | integrity | logic | voting | risk | assessment | secure | web | browsers | architecture | engineering | certificates | multi-user computer systems | distributed computer systems | physical security | discretionary access control | mandatory access control | information-flow models | covert channels | integrity models | elementary cryptography | authentication logic;electronic cash | viruses | firewalls | electronic voting | risk assessment | secure web browsers | network security | architecture engineering | digital signatures | authentication schemes | identification schemes | formal models | secure operating systems | software protection | electronic mail security | World Wide Web | ecommerce | email security | www | payment protocols | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.858 Computer Systems Security (MIT)

Description

6.858 Computer Systems Security is a class about the design and implementation of secure computer systems. Lectures cover threat models, attacks that compromise security, and techniques for achieving security, based on recent research papers. Topics include operating system (OS) security, capabilities, information flow control, language security, network protocols, hardware security, and security in web applications.

Subjects

computer system design | secure computer systems | threat model | computer systems security | operating system | operating system security | capabilities | information flow control | language security | network protocols | hardware security | web | web application security | secure web server | web application

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Linux - delovna postaja Linux on workstation

Description

Priročnik za profesorje informatike in računalništva ter vedoželjne učence. Delo je nastalo v okviru projekta OKO. Založba B2, Ljubljana Manual for teachers and pupils interested in Linux. How to prepare/install/uses RedHat Linux (and other distributions) on a PC.

Subjects

uporabne vede | applied sciences | računalništvo | computer science | operacijski sistem linux | operating system | linux | osebni računalnik | personal computer | omrežje | network

License

http://creativecommons.org/licenses/by-nc-sa/2.5/si/ http://creativecommons.org/licenses/by-nc-sa/2.5/si/

Site sourced from

http://atlas.fri.uni-lj.si/oai/index.php?verb=ListRecords&metadataPrefix=oai_dc&set=uciteljska

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata