Searching for operations research : 15 results found | RSS Feed for this search

1

21A.350J The Anthropology of Computing (MIT) 21A.350J The Anthropology of Computing (MIT)

Description

This course examines computers anthropologically, as meaningful tools revealing the social and cultural orders that produce them. We read classic texts in computer science along with works analyzing links between machines and culture. We explore early computation theory and capitalist manufacturing; cybernetics and WWII operations research; artificial intelligence and gendered subjectivity; the creation and commodification of the personal computer; the hacking aesthetic; non-Western histories of computing; the growth of the Internet as a military, academic, and commercial project; the politics of identity in cyberspace; and the emergence of "evolutionary" computation. This course examines computers anthropologically, as meaningful tools revealing the social and cultural orders that produce them. We read classic texts in computer science along with works analyzing links between machines and culture. We explore early computation theory and capitalist manufacturing; cybernetics and WWII operations research; artificial intelligence and gendered subjectivity; the creation and commodification of the personal computer; the hacking aesthetic; non-Western histories of computing; the growth of the Internet as a military, academic, and commercial project; the politics of identity in cyberspace; and the emergence of "evolutionary" computation.

Subjects

Computing | Computing | machines and culture | machines and culture | computation theory | computation theory | cybernetics | cybernetics | operations research | operations research | artifical intelligence | artifical intelligence | personal computer | personal computer | commodification | commodification | hacking | hacking | hacker | hacker | Internet | Internet | cyberspace | cyberspace | indentity in cyberspace | indentity in cyberspace | cosmology | cosmology | clockwork | clockwork | Charles Babbage | Charles Babbage | Ada Lovelace | Ada Lovelace | Industrial Revolution | Industrial Revolution | calculating machine | calculating machine | coding | coding | cold war | cold war | Alan Turing | Alan Turing | African mathematical systems | African mathematical systems | counterculture | counterculture | PC | PC | gaming | gaming | open source | open source | free software | free software | software | software | 21A.350 | 21A.350 | SP.484 | SP.484 | STS.086 | STS.086

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.410 Principles of Autonomy and Decision Making (MIT) 16.410 Principles of Autonomy and Decision Making (MIT)

Description

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information

Subjects

autonomy | autonomy | decision | decision | decision-making | decision-making | reasoning | reasoning | optimization | optimization | autonomous | autonomous | autonomous systems | autonomous systems | decision support | decision support | algorithms | algorithms | artificial intelligence | artificial intelligence | a.i. | a.i. | operations | operations | operations research | operations research | logic | logic | deduction | deduction | heuristic search | heuristic search | constraint-based search | constraint-based search | model-based reasoning | model-based reasoning | planning | planning | execution | execution | uncertainty | uncertainty | machine learning | machine learning | linear programming | linear programming | dynamic programming | dynamic programming | integer programming | integer programming | network optimization | network optimization | decision analysis | decision analysis | decision theoretic planning | decision theoretic planning | Markov decision process | Markov decision process | scheme | scheme | propositional logic | propositional logic | constraints | constraints | Markov processes | Markov processes | computational performance | computational performance | satisfaction | satisfaction | learning algorithms | learning algorithms | system state | system state | state | state | search treees | search treees | plan spaces | plan spaces | model theory | model theory | decision trees | decision trees | function approximators | function approximators | optimization algorithms | optimization algorithms | limitations | limitations | tradeoffs | tradeoffs | search and reasoning | search and reasoning | game tree search | game tree search | local stochastic search | local stochastic search | stochastic | stochastic | genetic algorithms | genetic algorithms | constraint satisfaction | constraint satisfaction | propositional inference | propositional inference | rule-based systems | rule-based systems | rule-based | rule-based | model-based diagnosis | model-based diagnosis | neural nets | neural nets | reinforcement learning | reinforcement learning | web-based | web-based | search trees | search trees

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.410 Principles of Autonomy and Decision Making (MIT) 16.410 Principles of Autonomy and Decision Making (MIT)

Description

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information

Subjects

autonomy | autonomy | decision | decision | decision-making | decision-making | reasoning | reasoning | optimization | optimization | autonomous | autonomous | autonomous systems | autonomous systems | decision support | decision support | algorithms | algorithms | artificial intelligence | artificial intelligence | a.i. | a.i. | operations | operations | operations research | operations research | logic | logic | deduction | deduction | heuristic search | heuristic search | constraint-based search | constraint-based search | model-based reasoning | model-based reasoning | planning | planning | execution | execution | uncertainty | uncertainty | machine learning | machine learning | linear programming | linear programming | dynamic programming | dynamic programming | integer programming | integer programming | network optimization | network optimization | decision analysis | decision analysis | decision theoretic planning | decision theoretic planning | Markov decision process | Markov decision process | scheme | scheme | propositional logic | propositional logic | constraints | constraints | Markov processes | Markov processes | computational performance | computational performance | satisfaction | satisfaction | learning algorithms | learning algorithms | system state | system state | state | state | search treees | search treees | plan spaces | plan spaces | model theory | model theory | decision trees | decision trees | function approximators | function approximators | optimization algorithms | optimization algorithms | limitations | limitations | tradeoffs | tradeoffs | search and reasoning | search and reasoning | game tree search | game tree search | local stochastic search | local stochastic search | stochastic | stochastic | genetic algorithms | genetic algorithms | constraint satisfaction | constraint satisfaction | propositional inference | propositional inference | rule-based systems | rule-based systems | rule-based | rule-based | model-based diagnosis | model-based diagnosis | neural nets | neural nets | reinforcement learning | reinforcement learning | web-based | web-based | search trees | search trees

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.203J Logistical and Transportation Planning Methods (MIT) 1.203J Logistical and Transportation Planning Methods (MIT)

Description

The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics. The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics.

Subjects

1.203 | 1.203 | 6.281 | 6.281 | 15.073 | 15.073 | 16.76 | 16.76 | ESD.216 | ESD.216 | logistics | logistics | transportation | transportation | hypercube models | hypercube models | barrier example | barrier example | operations research | operations research | spatial queues | spatial queues | queueing models | queueing models | network models | network models | TSP | TSP | heuristics | heuristics | geometrical probabilities | geometrical probabilities | Markov | Markov | quantitative techniques | quantitative techniques | transportation systems analysis | transportation systems analysis | urban service systems | urban service systems | emergency services | emergency services | random variables | random variables | multi-server queueing theory | multi-server queueing theory | spatial location theory | spatial location theory | network analysis | network analysis | graph theory | graph theory | simulation | simulation | urban OR | urban OR

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.86 Models, Data and Inference for Socio-Technical Systems (MIT) ESD.86 Models, Data and Inference for Socio-Technical Systems (MIT)

Description

In this class, students use data and systems knowledge to build models of complex socio-technical systems for improved system design and decision-making. Students will enhance their model-building skills, through review and extension of functions of random variables, Poisson processes, and Markov processes; move from applied probability to statistics via Chi-squared t and f tests, derived as functions of random variables; and review classical statistics, hypothesis tests, regression, correlation and causation, simple data mining techniques, and Bayesian vs. classical statistics. A class project is required. In this class, students use data and systems knowledge to build models of complex socio-technical systems for improved system design and decision-making. Students will enhance their model-building skills, through review and extension of functions of random variables, Poisson processes, and Markov processes; move from applied probability to statistics via Chi-squared t and f tests, derived as functions of random variables; and review classical statistics, hypothesis tests, regression, correlation and causation, simple data mining techniques, and Bayesian vs. classical statistics. A class project is required.

Subjects

statistics | statistics | statistical model | statistical model | modelling | modelling | probability | probability | probabilistic model | probabilistic model | risk assessment | risk assessment | system analysis | system analysis | system design | system design | systems engineering | systems engineering | distributions | distributions | poisson | poisson | markov | markov | queuing theory | queuing theory | congestion | congestion | traffic | traffic | regression | regression | hypothesis testing | hypothesis testing | inference | inference | operations research | operations research | Weibull analysis | Weibull analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ESD.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.203J Logistical and Transportation Planning Methods (MIT) 1.203J Logistical and Transportation Planning Methods (MIT)

Description

The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics. The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics.

Subjects

logistics | logistics | transportation | transportation | hypercube models | hypercube models | barrier example | barrier example | operations research | operations research | spatial queues | spatial queues | queueing models | queueing models | network models | network models | TSP | TSP | heuristics | heuristics | geometrical probablities | geometrical probablities | Markov | Markov | 1.203 | 1.203 | 6.281 | 6.281 | 15.073 | 15.073 | 16.76 | 16.76 | ESD.216 | ESD.216

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.203J Logistical and Transportation Planning Methods (MIT)

Description

The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics.

Subjects

logistics | transportation | hypercube models | barrier example | operations research | spatial queues | queueing models | network models | TSP | heuristics | geometrical probablities | Markov | 1.203 | 6.281 | 15.073 | 16.76 | ESD.216

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.203J Logistical and Transportation Planning Methods (MIT)

Description

The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics.

Subjects

1.203 | 6.281 | 15.073 | 16.76 | ESD.216 | logistics | transportation | hypercube models | barrier example | operations research | spatial queues | queueing models | network models | TSP | heuristics | geometrical probabilities | Markov | quantitative techniques | transportation systems analysis | urban service systems | emergency services | random variables | multi-server queueing theory | spatial location theory | network analysis | graph theory | simulation | urban OR

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.203J Logistical and Transportation Planning Methods (MIT)

Description

The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics.

Subjects

1.203 | 6.281 | 15.073 | 16.76 | ESD.216 | logistics | transportation | hypercube models | barrier example | operations research | spatial queues | queueing models | network models | TSP | heuristics | geometrical probabilities | Markov | quantitative techniques | transportation systems analysis | urban service systems | emergency services | random variables | multi-server queueing theory | spatial location theory | network analysis | graph theory | simulation | urban OR

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.203J Logistical and Transportation Planning Methods (MIT)

Description

The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics.

Subjects

logistics | transportation | hypercube models | barrier example | operations research | spatial queues | queueing models | network models | TSP | heuristics | geometrical probablities | Markov | 1.203 | 6.281 | 15.073 | 16.76 | ESD.216

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21A.350J The Anthropology of Computing (MIT)

Description

This course examines computers anthropologically, as meaningful tools revealing the social and cultural orders that produce them. We read classic texts in computer science along with works analyzing links between machines and culture. We explore early computation theory and capitalist manufacturing; cybernetics and WWII operations research; artificial intelligence and gendered subjectivity; the creation and commodification of the personal computer; the hacking aesthetic; non-Western histories of computing; the growth of the Internet as a military, academic, and commercial project; the politics of identity in cyberspace; and the emergence of "evolutionary" computation.

Subjects

Computing | machines and culture | computation theory | cybernetics | operations research | artifical intelligence | personal computer | commodification | hacking | hacker | Internet | cyberspace | indentity in cyberspace | cosmology | clockwork | Charles Babbage | Ada Lovelace | Industrial Revolution | calculating machine | coding | cold war | Alan Turing | African mathematical systems | counterculture | PC | gaming | open source | free software | software | 21A.350 | SP.484 | STS.086

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.410 Principles of Autonomy and Decision Making (MIT)

Description

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information

Subjects

autonomy | decision | decision-making | reasoning | optimization | autonomous | autonomous systems | decision support | algorithms | artificial intelligence | a.i. | operations | operations research | logic | deduction | heuristic search | constraint-based search | model-based reasoning | planning | execution | uncertainty | machine learning | linear programming | dynamic programming | integer programming | network optimization | decision analysis | decision theoretic planning | Markov decision process | scheme | propositional logic | constraints | Markov processes | computational performance | satisfaction | learning algorithms | system state | state | search treees | plan spaces | model theory | decision trees | function approximators | optimization algorithms | limitations | tradeoffs | search and reasoning | game tree search | local stochastic search | stochastic | genetic algorithms | constraint satisfaction | propositional inference | rule-based systems | rule-based | model-based diagnosis | neural nets | reinforcement learning | web-based | search trees

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.410 Principles of Autonomy and Decision Making (MIT)

Description

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information

Subjects

autonomy | decision | decision-making | reasoning | optimization | autonomous | autonomous systems | decision support | algorithms | artificial intelligence | a.i. | operations | operations research | logic | deduction | heuristic search | constraint-based search | model-based reasoning | planning | execution | uncertainty | machine learning | linear programming | dynamic programming | integer programming | network optimization | decision analysis | decision theoretic planning | Markov decision process | scheme | propositional logic | constraints | Markov processes | computational performance | satisfaction | learning algorithms | system state | state | search treees | plan spaces | model theory | decision trees | function approximators | optimization algorithms | limitations | tradeoffs | search and reasoning | game tree search | local stochastic search | stochastic | genetic algorithms | constraint satisfaction | propositional inference | rule-based systems | rule-based | model-based diagnosis | neural nets | reinforcement learning | web-based | search trees

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.203J Logistical and Transportation Planning Methods (MIT)

Description

The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics.

Subjects

1.203 | 6.281 | 15.073 | 16.76 | ESD.216 | logistics | transportation | hypercube models | barrier example | operations research | spatial queues | queueing models | network models | TSP | heuristics | geometrical probabilities | Markov | quantitative techniques | transportation systems analysis | urban service systems | emergency services | random variables | multi-server queueing theory | spatial location theory | network analysis | graph theory | simulation | urban OR

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.86 Models, Data and Inference for Socio-Technical Systems (MIT)

Description

In this class, students use data and systems knowledge to build models of complex socio-technical systems for improved system design and decision-making. Students will enhance their model-building skills, through review and extension of functions of random variables, Poisson processes, and Markov processes; move from applied probability to statistics via Chi-squared t and f tests, derived as functions of random variables; and review classical statistics, hypothesis tests, regression, correlation and causation, simple data mining techniques, and Bayesian vs. classical statistics. A class project is required.

Subjects

statistics | statistical model | modelling | probability | probabilistic model | risk assessment | system analysis | system design | systems engineering | distributions | poisson | markov | queuing theory | congestion | traffic | regression | hypothesis testing | inference | operations research | Weibull analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata