Searching for oxygen : 65 results found | RSS Feed for this search

1 2 3

7.343 The Radical Consequences of Respiration: Reactive Oxygen Species in Aging and Disease (MIT) 7.343 The Radical Consequences of Respiration: Reactive Oxygen Species in Aging and Disease (MIT)

Description

This course will start with a survey of basic oxygen radical biochemistry followed by a discussion of the mechanisms of action of cellular as well as dietary antioxidants. After considering the normal physiological roles of oxidants, we will examine the effects of elevated ROS and a failure of cellular redox capacity on the rate of organismal and cellular aging as well as on the onset and progression of several major diseases that are often age-related. Topics will include ROS-induced effects on stem cell regeneration, insulin resistance, heart disease, neurodegenerative disorders, and cancer. The role of antioxidants in potential therapeutic strategies for modulating ROS levels will also be discussed. This course is one of many Advanced Undergraduate Seminars offered by the Biology D This course will start with a survey of basic oxygen radical biochemistry followed by a discussion of the mechanisms of action of cellular as well as dietary antioxidants. After considering the normal physiological roles of oxidants, we will examine the effects of elevated ROS and a failure of cellular redox capacity on the rate of organismal and cellular aging as well as on the onset and progression of several major diseases that are often age-related. Topics will include ROS-induced effects on stem cell regeneration, insulin resistance, heart disease, neurodegenerative disorders, and cancer. The role of antioxidants in potential therapeutic strategies for modulating ROS levels will also be discussed. This course is one of many Advanced Undergraduate Seminars offered by the Biology D

Subjects

reactive oxygen species | reactive oxygen species | oxygen | oxygen | ROS | ROS | energy | energy | mitochondria | mitochondria | cell signaling | cell signaling | anti-pathogen | anti-pathogen | oxidative damage | oxidative damage | oncogene | oncogene | antioxidant | antioxidant | insulin resistance | insulin resistance | diabetes | diabetes | stem cell | stem cell | neurodegenerative | neurodegenerative | ischemic | ischemic | ATP | ATP | pathways | pathways | NADPH | NADPH | nox | nox | psd | psd | programmed cell death | programmed cell death | apoptosis | apoptosis | hsc | hsc | hematopoietic | hematopoietic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

B0049P0040

Description

A cat recovering from diaphragmatic hernia surgery in an oxygen tank

Subjects

svmsvet | cat | oxygen | tank | cats | feline | felines | oxygentank | oxygencage

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

B0049P0039

Description

A cat recovering from diaphragmatic hernia surgery in an oxygen tank

Subjects

svmsvet | cat | oxygen | tank | cats | feline | felines | oxygentank | oxygencage

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

B0049P0040

Description

A cat recovering from diaphragmatic hernia surgery in an oxygen tank

Subjects

svmsvet | cat | oxygen | tank | cats | feline | felines | oxygentank | oxygencage

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

B0049P0039

Description

A cat recovering from diaphragmatic hernia surgery in an oxygen tank

Subjects

svmsvet | cat | oxygen | tank | cats | feline | felines | oxygentank | oxygencage

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Sophisticated Survival Skills of Simple Microorganisms (MIT) 7.343 Sophisticated Survival Skills of Simple Microorganisms (MIT)

Description

In this course, we will discuss the microbial physiology and genetics of stress responses in aquatic ecosystems, astrobiology, bacterial pathogenesis and other environments. We will learn about classical and novel methods utilized by researchers to uncover bacterial mechanisms induced under both general and environment-specific stresses. Finally, we will compare and contrast models for bacterial stress responses to gain an understanding of distinct mechanisms of survival and of why there are differences among bacterial genera. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly In this course, we will discuss the microbial physiology and genetics of stress responses in aquatic ecosystems, astrobiology, bacterial pathogenesis and other environments. We will learn about classical and novel methods utilized by researchers to uncover bacterial mechanisms induced under both general and environment-specific stresses. Finally, we will compare and contrast models for bacterial stress responses to gain an understanding of distinct mechanisms of survival and of why there are differences among bacterial genera. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly

Subjects

microbial physiology | microbial physiology | genetics | genetics | stress | stress | astrobiology | astrobiology | pathogenesis | pathogenesis | Escherichia coli | Escherichia coli | cyanobacteria | cyanobacteria | bleaching | bleaching | deprivation | deprivation | chlorosis | chlorosis | pollutants | pollutants | methylobacteria | methylobacteria | pathogen | pathogen | reactive oxygen species | reactive oxygen species | infection | infection | superoxides | superoxides | phage | phage | Deinococcus | Deinococcus | Raman spectroscopy | Raman spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Renal Disease

Description

Professor Chris Pugh tells us about the links between genetics, renal disease and oxygen sensing. The kidney plays a central role in our metabolism, by controlling various physiological balances. Genetics plays an important role in renal disease since gene defects lead to all sorts of malfunctions. Prof. Chris Pugh is working on the oxygen sensing functions of the body; whilst these were discovered in the context of erythropoietin production the underlying system controls about 1000 genes. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

tumour | oxygen | ischaemia and angiogenesis | hydroxylase | HIF | Physiology | tumour | oxygen | ischaemia and angiogenesis | hydroxylase | HIF | Physiology

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Photosynthesis: Life from Light (MIT) 7.343 Photosynthesis: Life from Light (MIT)

Description

In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co

Subjects

photosynthesis | photosynthesis | life from light | life from light | conversion | conversion | solar energy | solar energy | chemical energy | chemical energy | biogeochemical cycles | biogeochemical cycles | global warming | global warming | physical | physical | chemical and biological reactions | chemical and biological reactions | light harvesting | light harvesting | photochemistry | photochemistry | protein complexes | protein complexes | synthesis of ATP | synthesis of ATP | reduction of CO2 | reduction of CO2 | carbohydrates | carbohydrates | light-driven proton pumps | light-driven proton pumps | anoxygenic photosynthesis | anoxygenic photosynthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.742 Marine Chemistry (MIT) 12.742 Marine Chemistry (MIT)

Description

Includes audio/video content: AV selected lectures. This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers. Includes audio/video content: AV selected lectures. This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers.

Subjects

chemical oceanography | chemical oceanography | biogeochemical cycling | biogeochemical cycling | water column processes | water column processes | ocean particles | ocean particles | seawater composition | seawater composition | ocean particle transport | ocean particle transport | carbon | carbon | oxygen | oxygen | nitrogen | nitrogen | phosphorus | phosphorus | sulfur | sulfur | carbon dioxide | carbon dioxide | sediment chemistry | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

First Flight of a Liquid Propellant Rocket First Flight of a Liquid Propellant Rocket

Description

Subjects

auburn | auburn | robertgoddard | robertgoddard | liquidoxygengasolinerocket | liquidoxygengasolinerocket

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.301 Past and Present Climate (12.301) / Climate Physics and Chemistry (12.842) (MIT) 12.301 Past and Present Climate (12.301) / Climate Physics and Chemistry (12.842) (MIT)

Description

This course introduces students to climate studies, including beginnings of the solar system, time scales, and climate in human history. This course introduces students to climate studies, including beginnings of the solar system, time scales, and climate in human history.

Subjects

climate | climate | climate change | climate change | proxies | proxies | ice cores | ice cores | primordial atmosphere | primordial atmosphere | ozone chemistry | ozone chemistry | carbon and oxygen cycles | carbon and oxygen cycles | heat and water budgets | heat and water budgets | aerosols | aerosols | water vapor | water vapor | clouds | clouds | ocean circulation | ocean circulation | orbital variations | orbital variations | volcanism | volcanism | plate tectonics | plate tectonics | solar system | solar system | solar variability | solar variability | climate model | climate model | energy balance | energy balance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.479J Water and Sanitation Infrastructure in Developing Countries (MIT) 11.479J Water and Sanitation Infrastructure in Developing Countries (MIT)

Description

This course deals with the principles of infrastructure planning in developing countries, with a focus on appropriate and sustainable technologies for water and sanitation. It also incorporates technical, socio-cultural, public health, and economic factors into the planning and design of water and sanitation systems. Upon completion, students will be able to plan simple, yet reliable, water supply and sanitation systems for developing countries that are compatible with local customs and available human and material resources. Graduate and upper division students from any department who are interested in international development at the grassroots level are encouraged to participate in this interdisciplinary subject. Acknowledgment This course was jointly developed by Earthea Nance and Sus This course deals with the principles of infrastructure planning in developing countries, with a focus on appropriate and sustainable technologies for water and sanitation. It also incorporates technical, socio-cultural, public health, and economic factors into the planning and design of water and sanitation systems. Upon completion, students will be able to plan simple, yet reliable, water supply and sanitation systems for developing countries that are compatible with local customs and available human and material resources. Graduate and upper division students from any department who are interested in international development at the grassroots level are encouraged to participate in this interdisciplinary subject. Acknowledgment This course was jointly developed by Earthea Nance and Sus

Subjects

chemical oceanography | chemical oceanography | biogeochemical cycling | biogeochemical cycling | water column processes | water column processes | ocean particles | ocean particles | seawater composition | seawater composition | ocean particle transport | ocean particle transport | carbon | carbon | oxygen | oxygen | nitrogen | nitrogen | phosphorus | phosphorus | sulfur | sulfur | carbon dioxide | carbon dioxide | sediment chemistry | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 The Radical Consequences of Respiration: Reactive Oxygen Species in Aging and Disease (MIT)

Description

This course will start with a survey of basic oxygen radical biochemistry followed by a discussion of the mechanisms of action of cellular as well as dietary antioxidants. After considering the normal physiological roles of oxidants, we will examine the effects of elevated ROS and a failure of cellular redox capacity on the rate of organismal and cellular aging as well as on the onset and progression of several major diseases that are often age-related. Topics will include ROS-induced effects on stem cell regeneration, insulin resistance, heart disease, neurodegenerative disorders, and cancer. The role of antioxidants in potential therapeutic strategies for modulating ROS levels will also be discussed. This course is one of many Advanced Undergraduate Seminars offered by the Biology D

Subjects

reactive oxygen species | oxygen | ROS | energy | mitochondria | cell signaling | anti-pathogen | oxidative damage | oncogene | antioxidant | insulin resistance | diabetes | stem cell | neurodegenerative | ischemic | ATP | pathways | NADPH | nox | psd | programmed cell death | apoptosis | hsc | hematopoietic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.301 Climate Physics and Chemistry (MIT) 12.301 Climate Physics and Chemistry (MIT)

Description

This course introduces students to climate studies, including beginnings of the solar system, time scales, and climate in human history; methods for detecting climate change, including proxies, ice cores, instrumental records, and time series analysis; physical and chemical processes in climate, including primordial atmosphere, ozone chemistry, carbon and oxygen cycles, and heat and water budgets; internal feedback mechanisms, including ice, aerosols, water vapor, clouds, and ocean circulation; climate forcing, including orbital variations, volcanism, plate tectonics, and solar variability; climate models and mechanisms of variability, including energy balance, coupled models, and global ocean and atmosphere models; and outstanding problems. This course introduces students to climate studies, including beginnings of the solar system, time scales, and climate in human history; methods for detecting climate change, including proxies, ice cores, instrumental records, and time series analysis; physical and chemical processes in climate, including primordial atmosphere, ozone chemistry, carbon and oxygen cycles, and heat and water budgets; internal feedback mechanisms, including ice, aerosols, water vapor, clouds, and ocean circulation; climate forcing, including orbital variations, volcanism, plate tectonics, and solar variability; climate models and mechanisms of variability, including energy balance, coupled models, and global ocean and atmosphere models; and outstanding problems.

Subjects

climate | climate | climate change | climate change | proxies | proxies | ice cores | ice cores | primordial atmosphere | primordial atmosphere | ozone chemistry | ozone chemistry | carbon and oxygen cycles | carbon and oxygen cycles | heat and water budgets | heat and water budgets | aerosols | aerosols | water vapor | water vapor | clouds | clouds | ocean circulation | ocean circulation | orbital variations | orbital variations | volcanism | volcanism | plate tectonics | plate tectonics | solar system | solar system | solar variability | solar variability | climate model | climate model | energy balance | energy balance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Renal Disease

Description

Professor Chris Pugh tells us about the links between genetics, renal disease and oxygen sensing. The kidney plays a central role in our metabolism, by controlling various physiological balances. Genetics plays an important role in renal disease since gene defects lead to all sorts of malfunctions. Prof. Chris Pugh is working on the oxygen sensing functions of the body; whilst these were discovered in the context of erythropoietin production the underlying system controls about 1000 genes. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

tumour | oxygen | ischaemia and angiogenesis | hydroxylase | HIF | Physiology | tumour | oxygen | ischaemia and angiogenesis | hydroxylase | HIF | Physiology

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.842 Climate Physics and Chemistry (MIT) 12.842 Climate Physics and Chemistry (MIT)

Description

This course introduces students to climate studies, including beginnings of the solar system, time scales, and climate in human history. It is offered to both undergraduate and graduate students with different requirements. This course introduces students to climate studies, including beginnings of the solar system, time scales, and climate in human history. It is offered to both undergraduate and graduate students with different requirements.

Subjects

climate | climate | climate change | climate change | proxies | proxies | ice cores | ice cores | primordial atmosphere | primordial atmosphere | ozone chemistry | ozone chemistry | carbon and oxygen cycles | carbon and oxygen cycles | heat and water budgets | heat and water budgets | aerosols | aerosols | water vapor | water vapor | clouds | clouds | ocean circulation | ocean circulation | orbital variations | orbital variations | volcanism | volcanism | plate tectonics | plate tectonics | solar system | solar system | solar variability | solar variability | climate model | climate model | energy balance | energy balance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 The Biology of Aging: Age-Related Diseases and Interventions (MIT) 7.342 The Biology of Aging: Age-Related Diseases and Interventions (MIT)

Description

Aging involves an intrinsic and progressive decline in function that eventually will affect us all. While everyone is familiar with aging, many basic questions about aging are mysterious. Why are older people more likely to experience diseases like cancer, stroke, and neurodegenerative disorders? What changes happen at the molecular and cellular levels to cause the changes that we associate with old age? Is aging itself a disease, and can we successfully intervene in the aging process?This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Ad Aging involves an intrinsic and progressive decline in function that eventually will affect us all. While everyone is familiar with aging, many basic questions about aging are mysterious. Why are older people more likely to experience diseases like cancer, stroke, and neurodegenerative disorders? What changes happen at the molecular and cellular levels to cause the changes that we associate with old age? Is aging itself a disease, and can we successfully intervene in the aging process?This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Ad

Subjects

Aging | Aging | age-related diseases | age-related diseases | molecular biology of aging | molecular biology of aging | calorie restriction | calorie restriction | resveratrol | resveratrol | rapamycin | rapamycin | Caloric restriction (CR) | Caloric restriction (CR) | Cellular senescence | Cellular senescence | telomerase | telomerase | progeroid syndromes | progeroid syndromes | mitochondrial DNA | mitochondrial DNA | yeast | yeast | C. elegans | C. elegans | Drosophila | Drosophila | Sirtuins | Sirtuins | SIR4 | SIR4 | target of rapamycin (TOR) | target of rapamycin (TOR) | oxidative damage | oxidative damage | Reactive oxygen species (ROS) | Reactive oxygen species (ROS) | National Institute on Aging Interventions Testing Program | National Institute on Aging Interventions Testing Program | Alzheimer’s disease | Alzheimer’s disease

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Climate change: cyclone history

Description

YouTube presentation

Subjects

earth sciences | environmental sciences | geography | coasts | cyclones | speleothem | oxygen isotopes | rainfall | climate change | ukoer | geesoer | medieval warm period | little ice age | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A patient with breathing difficulties

Description

An image of a hospital patient with breathing difficulties

Subjects

air oxygen bed

License

Cartoon by Bob Pomfret, copyright Oxford Brookes University. This work is licenced under a Creative Commons Licence: Attribution-Non-Commercial-No Derivative Works 2.0 UK: England & Wales - see http://creativecommons.org/licenses/by-nc-nd/2.0/uk Cartoon by Bob Pomfret, copyright Oxford Brookes University. This work is licenced under a Creative Commons Licence: Attribution-Non-Commercial-No Derivative Works 2.0 UK: England & Wales - see http://creativecommons.org/licenses/by-nc-nd/2.0/uk

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.301 Climate Physics and Chemistry (MIT)

Description

This course introduces students to climate studies, including beginnings of the solar system, time scales, and climate in human history; methods for detecting climate change, including proxies, ice cores, instrumental records, and time series analysis; physical and chemical processes in climate, including primordial atmosphere, ozone chemistry, carbon and oxygen cycles, and heat and water budgets; internal feedback mechanisms, including ice, aerosols, water vapor, clouds, and ocean circulation; climate forcing, including orbital variations, volcanism, plate tectonics, and solar variability; climate models and mechanisms of variability, including energy balance, coupled models, and global ocean and atmosphere models; and outstanding problems.

Subjects

climate | climate change | proxies | ice cores | primordial atmosphere | ozone chemistry | carbon and oxygen cycles | heat and water budgets | aerosols | water vapor | clouds | ocean circulation | orbital variations | volcanism | plate tectonics | solar system | solar variability | climate model | energy balance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

COPD and emphysema

Description

Please visit the My Lungs My Life resource for more advice, support and information regarding chest illness - http://mylungsmylife.org

Subjects

CHSS | My Lungs My Life | COPD | Chronic Obstructive Pulmonary Disease | emphysema | irritant | alveoli | oxygen | carbon dioxide | HEALTH CARE / MEDICINE / HEALTH and SAFETY | P

License

Attribution-NonCommercial-NoDerivatives 4.0 International Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/4.0/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ECorr: Potential Measurement

Description

An important corrosion property often measured in the lab and field is the potential of an electrode. This case study gives an overview of how and why this is done as well as giving insight into how to interpret the measurements. This is an introductory level case study.

Subjects

corrosion | engineering | metals | steel | seawater | oxygen diffusion | surface | corrosion control | corrosion rate | cathodic protection | organic coating | evans diagrams | corrosion reactions | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Alumina-zirconia-silica (AZS) refractory brick

Description

On cooling the ceramic liquid precipitates primary ZrO2 dendrites (white), grey corundum (Al2O3) and a ZrO2/Al2O3 eutectic while glass solidifies from the remaining liquid (slightly darker than the corundum). The composition of this glass is carefully controlled so that it is fluid enough to accommodate the tetragonal to monoclinic ZrO2 transition n heating the glass tank to use temperature. The AZS microstructure is carefully designed so that the alumina dissolves in the tank glass (soda-lime-silica, SLS) leaving a viscous alumina rich layer which protects the refractory. It can survive 12 years continuous use in direct contact with fluid, corrosive SLS liquid at temperatures up to 1500 C.

Subjects

alumina | aluminium | brick | ceramic | dendrite | eutectic | glass | oxygen | silica | silicon | zirconia | zirconium | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Alumina-graphite brick

Description

The fused alumina ceramic grain and natural graphite flakes (seen edge on in the micrograph) are held together by a polymer-derived carbon bond and protected from oxidation by a metal (bright Si) which betters oxygen in use to form e.g. SiO2. A true composite material.

Subjects

alumina | aluminium | antioxidant | brick | carbon | ceramic | composite material | graphite | oxygen | silicon | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Barium Hexaferrite

Description

The porosity (dark) level is high since in use strength is not a priority. The original granule size (about 30 micrometre diameter) is easily visualised since extensive intergranular porosity is present.

Subjects

barium | barium hexaferrite | carbon | ceramic | ferrite | granule | hard magnet | iron | oxygen | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata