Searching for pathway : 73 results found | RSS Feed for this search

1 2 3

7.88J Protein Folding Problem (MIT) 7.88J Protein Folding Problem (MIT)

Description

This course focuses on the mechanisms by which the amino acid sequence of polypeptide chains (proteins), determine their three-dimensional conformation. Topics in this course include sequence determinants of secondary structure, the folding of newly synthesized polypeptide chains within cells, folding intermediates aggregation and competing off-pathway reactions, and the unfolding and refolding of proteins in vitro. Additional topics covered are the role of helper proteins such as chaperonins and isomerases, protein recovery problems in the biotechnology industry, and diseases found associated with protein folding defects. This course focuses on the mechanisms by which the amino acid sequence of polypeptide chains (proteins), determine their three-dimensional conformation. Topics in this course include sequence determinants of secondary structure, the folding of newly synthesized polypeptide chains within cells, folding intermediates aggregation and competing off-pathway reactions, and the unfolding and refolding of proteins in vitro. Additional topics covered are the role of helper proteins such as chaperonins and isomerases, protein recovery problems in the biotechnology industry, and diseases found associated with protein folding defects.

Subjects

amino acid sequence | amino acid sequence | polypeptide chains | polypeptide chains | sequence determinants | sequence determinants | folding | folding | synthesized polypeptide chains within cells | synthesized polypeptide chains within cells | unfolding and refolding of proteins in vitro | unfolding and refolding of proteins in vitro | folding intermediates aggregation | folding intermediates aggregation | competing off-pathway reactions | competing off-pathway reactions | chaperonins | chaperonins | isomerases | isomerases | helper proteins | helper proteins | protein recovery problems | protein recovery problems | biotechnology industry | biotechnology industry | protein folding defects | protein folding defects | 3-D conformation | 3-D conformation | globular proteins | globular proteins | fibrous proteins | fibrous proteins | kinetics | kinetics | in vitro refolding | in vitro refolding | pathways | pathways | in vivo folding | in vivo folding | synthesized proteins | synthesized proteins | aggregation | aggregation | protein misfolding | protein misfolding | human disease | human disease | protein folding | protein folding | genome sequences | genome sequences | 7.88 | 7.88 | 5.48 | 5.48 | 7.24 | 7.24 | 10.543 | 10.543

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Cancer Biology: From Basic Research to the Clinic (MIT) 7.342 Cancer Biology: From Basic Research to the Clinic (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In 1971, President Nixon declared the "War on Cancer," but after three decades the war is still raging. How much progress have we made toward winning the war and what are we doing to improve the fight? Understanding the molecular and cellular events involved in tumor formation, progression, and metastasis is crucial to the development of innovative therapy for cancer patients. Insights into these processes have been gleaned through basic research using biochemical, molecular, and genetic ana This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In 1971, President Nixon declared the "War on Cancer," but after three decades the war is still raging. How much progress have we made toward winning the war and what are we doing to improve the fight? Understanding the molecular and cellular events involved in tumor formation, progression, and metastasis is crucial to the development of innovative therapy for cancer patients. Insights into these processes have been gleaned through basic research using biochemical, molecular, and genetic ana

Subjects

cancer | cancer | tumor | tumor | metastasis | metastasis | genetic analysis | genetic analysis | cancer biology | cancer biology | model organisms | model organisms | genetic pathways | genetic pathways | uncontrolled growth | uncontrolled growth | tumor suppressor genes | tumor suppressor genes | oncogenes | oncogenes | tumor initiation | tumor initiation | cell cycle | cell cycle | chromosomal aberration | chromosomal aberration | apoptosis | apoptosis | cell death | cell death | signal transduction pathways | signal transduction pathways | proto-oncogene | proto-oncogene | mutation | mutation | DNA mismatch repair | DNA mismatch repair | telomeres | telomeres | mouse models | mouse models | tissue specificity | tissue specificity | malignancy | malignancy | stem cells | stem cells | therapeutic resistance | therapeutic resistance | differentiation | differentiation | caner research | caner research | cancer therapeutics | cancer therapeutics | chemotherapy | chemotherapy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.913-A Intensive Neuroanatomy (MIT) 9.913-A Intensive Neuroanatomy (MIT)

Description

The course will start with an overview of the central and peripheral nervous systems (CNS and PNS), the development of their structure and major divisions. The major functional components of the CNS will then be reviewed individually. Topography, functional distribution of nerve cell bodies, ascending and descending tracts in the spinal cord. Brainstem organization and functional components, including cranial nerve nuclei, ascending / descending pathways, amine-containing cells, structure and information flow in the cerebellar and vestibular systems. Distribution of the cranial nerves, resolution of their skeletal and branchial arch components. Functional divisions of the Diencephalon and Telencephalon. The course will then continue with how these various CNS pieces and parts work together The course will start with an overview of the central and peripheral nervous systems (CNS and PNS), the development of their structure and major divisions. The major functional components of the CNS will then be reviewed individually. Topography, functional distribution of nerve cell bodies, ascending and descending tracts in the spinal cord. Brainstem organization and functional components, including cranial nerve nuclei, ascending / descending pathways, amine-containing cells, structure and information flow in the cerebellar and vestibular systems. Distribution of the cranial nerves, resolution of their skeletal and branchial arch components. Functional divisions of the Diencephalon and Telencephalon. The course will then continue with how these various CNS pieces and parts work together

Subjects

peripheral nervous systems | peripheral nervous systems | CNS | CNS | PNS | PNS | structure | structure | nerve cell bodies | nerve cell bodies | ascending and descending tracts | ascending and descending tracts | spinal cord | spinal cord | brainstem | brainstem | cranial nerve nuclei | cranial nerve nuclei | ascending/descending pathways | ascending/descending pathways | amine-containing cells | amine-containing cells | cerebellar | cerebellar | vestibular systems | vestibular systems | cranial nerves | cranial nerves | skeletal and branchial arch | skeletal and branchial arch | diencephalon | diencephalon | Telencephalon | Telencephalon | Motor systems | Motor systems | motor neurons | motor neurons | motor units | motor units | medial | medial | lateral pathways | lateral pathways | sensory systems | sensory systems | visual | visual | auditory | auditory | somatosensory | somatosensory | olfaction | olfaction | limbic system | limbic system | autonomic control | autonomic control | Papez circuit | Papez circuit | neocortex | neocortex

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Neural Basis of Vision and Audition (MIT) 9.04 Neural Basis of Vision and Audition (MIT)

Description

Examines the neural bases of visual and auditory processing for perception and sensorimotor control. Focuses on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Studies visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization. Offered alternate years. Examines the neural bases of visual and auditory processing for perception and sensorimotor control. Focuses on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Studies visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization. Offered alternate years.

Subjects

visual system | visual system | eye-movement control | eye-movement control | retina | retina | lateral geniculate nucleus | lateral geniculate nucleus | visual cortex | visual cortex | the parallel channels | the parallel channels | color | color | motion | motion | depth | depth | form | form | neural control | neural control | visually guided eye movements | visually guided eye movements | middle ear | middle ear | cochlear | cochlear | otoacoustic emissions | otoacoustic emissions | cochlear ultrastructure and neuroanatomy | cochlear ultrastructure and neuroanatomy | cochlear ion homeostasis and synaptic transmission | cochlear ion homeostasis and synaptic transmission | noise-induced and age-related hearing loss | noise-induced and age-related hearing loss | neural degeneration | neural degeneration | neurophysiological | neurophysiological | ascending | ascending | descending | descending | auditory pathways auditory nerve | auditory pathways auditory nerve | cochlear nucleus | cochlear nucleus | inferior colliculus | inferior colliculus | olivocochlear system | olivocochlear system | functional brain imaging | functional brain imaging | tinnitus | tinnitus

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.88J Protein Folding and Human Disease (MIT) 7.88J Protein Folding and Human Disease (MIT)

Description

This course covers amino acid sequence control of protein folding, misfolding, amyloid polymerization and aggregation. Readings and discussions address topics such as chaperone structure and function, folding and assembly of fibrous proteins, and pathologies associated with protein misfolding and aggregation in Alzheimer's, Parkinson's, Huntington's and other protein deposition diseases. Students are required to write and present a research paper. This course covers amino acid sequence control of protein folding, misfolding, amyloid polymerization and aggregation. Readings and discussions address topics such as chaperone structure and function, folding and assembly of fibrous proteins, and pathologies associated with protein misfolding and aggregation in Alzheimer's, Parkinson's, Huntington's and other protein deposition diseases. Students are required to write and present a research paper.

Subjects

protein folding | protein folding | misfolding | misfolding | aggregation | aggregation | protein structures | protein structures | folding intermediates | folding intermediates | off-pathway aggregation | off-pathway aggregation | amyloid formation | amyloid formation | Key chaperones | Key chaperones | chaperonins | chaperonins | human protein deposition diseases | human protein deposition diseases | Alzheimer’s disease | Alzheimer’s disease | Parkinson’s disease | Parkinson’s disease | Huntington’s disease | Huntington’s disease | amyloids | amyloids | prions | prions | amino acid sequence | amino acid sequence | amyloid polymerization | amyloid polymerization | chaperone structure and function | chaperone structure and function | folding and assembly of fibrous proteins | folding and assembly of fibrous proteins

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 The Radical Consequences of Respiration: Reactive Oxygen Species in Aging and Disease (MIT) 7.343 The Radical Consequences of Respiration: Reactive Oxygen Species in Aging and Disease (MIT)

Description

This course will start with a survey of basic oxygen radical biochemistry followed by a discussion of the mechanisms of action of cellular as well as dietary antioxidants. After considering the normal physiological roles of oxidants, we will examine the effects of elevated ROS and a failure of cellular redox capacity on the rate of organismal and cellular aging as well as on the onset and progression of several major diseases that are often age-related. Topics will include ROS-induced effects on stem cell regeneration, insulin resistance, heart disease, neurodegenerative disorders, and cancer. The role of antioxidants in potential therapeutic strategies for modulating ROS levels will also be discussed. This course is one of many Advanced Undergraduate Seminars offered by the Biology D This course will start with a survey of basic oxygen radical biochemistry followed by a discussion of the mechanisms of action of cellular as well as dietary antioxidants. After considering the normal physiological roles of oxidants, we will examine the effects of elevated ROS and a failure of cellular redox capacity on the rate of organismal and cellular aging as well as on the onset and progression of several major diseases that are often age-related. Topics will include ROS-induced effects on stem cell regeneration, insulin resistance, heart disease, neurodegenerative disorders, and cancer. The role of antioxidants in potential therapeutic strategies for modulating ROS levels will also be discussed. This course is one of many Advanced Undergraduate Seminars offered by the Biology D

Subjects

reactive oxygen species | reactive oxygen species | oxygen | oxygen | ROS | ROS | energy | energy | mitochondria | mitochondria | cell signaling | cell signaling | anti-pathogen | anti-pathogen | oxidative damage | oxidative damage | oncogene | oncogene | antioxidant | antioxidant | insulin resistance | insulin resistance | diabetes | diabetes | stem cell | stem cell | neurodegenerative | neurodegenerative | ischemic | ischemic | ATP | ATP | pathways | pathways | NADPH | NADPH | nox | nox | psd | psd | programmed cell death | programmed cell death | apoptosis | apoptosis | hsc | hsc | hematopoietic | hematopoietic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Under the Radar Screen: How Bugs Trick Our Immune Defenses (MIT) 7.340 Under the Radar Screen: How Bugs Trick Our Immune Defenses (MIT)

Description

In this course, we will explore the specific ways by which microbes defeat our immune system and the molecular mechanisms that are under attack (phagocytosis, the ubiquitin/proteasome pathway, MHC I/II antigen presentation). Through our discussion and dissection of the primary research literature, we will explore aspects of host-pathogen interactions. We will particularly emphasize the experimental techniques used in the field and how to read and understand research data. Technological advances in the fight against microbes will also be discussed, with specific examples. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about In this course, we will explore the specific ways by which microbes defeat our immune system and the molecular mechanisms that are under attack (phagocytosis, the ubiquitin/proteasome pathway, MHC I/II antigen presentation). Through our discussion and dissection of the primary research literature, we will explore aspects of host-pathogen interactions. We will particularly emphasize the experimental techniques used in the field and how to read and understand research data. Technological advances in the fight against microbes will also be discussed, with specific examples. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about

Subjects

HIV | HIV | mycobacterium tuberculosis | mycobacterium tuberculosis | malaria | malaria | influenza | influenza | immune system | immune system | pathogens | pathogens | viruses | viruses | bacteria | bacteria | parasites | parasites | microbes | microbes | phagocytosis | phagocytosis | ubiquitin/proteasome pathway | ubiquitin/proteasome pathway | MHC I/II antigen presentation | MHC I/II antigen presentation | Salmonella | Salmonella | pathogen-associated molecular patterns | pathogen-associated molecular patterns | PAMP | PAMP | Toll-like receptors | Toll-like receptors | TLR | TLR | Vaccinia virus | Vaccinia virus | Proteasome | Proteasome | Ubiquitin; deubiquinating enzymes | Ubiquitin; deubiquinating enzymes | DUB | DUB | Herpes simplex virus | Herpes simplex virus | HSV | HSV | Yersinia | Yersinia | viral budding | viral budding | Human cytomegalovirus | Human cytomegalovirus | HCMV | HCMV | Histocompatiblity | Histocompatiblity | AIDS | AIDS | Kaposi Sarcoma-Associated Herpes virus | Kaposi Sarcoma-Associated Herpes virus | Mixoma virus | Mixoma virus | Epstein Barr virus | Epstein Barr virus | EBV | EBV | Burkitt?s B cell lymphoma | Burkitt?s B cell lymphoma

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Biomolecular Kinetics and Cell Dynamics (MIT) 20.320 Biomolecular Kinetics and Cell Dynamics (MIT)

Description

This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling | cell population scale | cell population scale

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Ubiquitination: The Proteasome and Human Disease (MIT) 7.340 Ubiquitination: The Proteasome and Human Disease (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. This seminar provides a deeper understanding of the post-translational mechanisms evolved by eukaryotic cells to target proteins for degradation. Students learn how proteins are recognized and degraded by specific machinery (the proteasome) through their previous tagging with another small protein, ubiquitin. Additional topics include principles of ubiquitin-proteasome function, its control of the most important cellular pathways, and the implication of this system in different human diseases. Finally, spe This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. This seminar provides a deeper understanding of the post-translational mechanisms evolved by eukaryotic cells to target proteins for degradation. Students learn how proteins are recognized and degraded by specific machinery (the proteasome) through their previous tagging with another small protein, ubiquitin. Additional topics include principles of ubiquitin-proteasome function, its control of the most important cellular pathways, and the implication of this system in different human diseases. Finally, spe

Subjects

ubiquitination | ubiquitination | ubiquitin | ubiquitin | proteasome | proteasome | post-translational mechanisms | post-translational mechanisms | ubiquitin-conjugation system | ubiquitin-conjugation system | neurodegenerative diseases | neurodegenerative diseases | immune response | immune response | cell cycle regulation | cell cycle regulation | apoptosis | apoptosis | signal transduction pathways | signal transduction pathways | tumorigenesis | tumorigenesis | protein degradation | protein degradation | Endoplasmic Reticulum Associated Degradation Pathway | Endoplasmic Reticulum Associated Degradation Pathway | ligases | ligases | translocated proteins | translocated proteins | misfolded proteins | misfolded proteins | trafficking membranes | trafficking membranes | cell cycle control | cell cycle control | programmed cell death | programmed cell death | Huntington's Disease | Huntington's Disease | Von Hippel-Lindau Disease | Von Hippel-Lindau Disease

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT) 9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control.

Subjects

neurotransmission | neurotransmission | nerve terminals | nerve terminals | monoamine transmitters | monoamine transmitters | acetylcholine | acetylcholine | serotonin | serotonin | dopamine | dopamine | norepinephrine | norepinephrine | amino acid and peptide transmitters | amino acid and peptide transmitters | neuromodulators | neuromodulators | adenosine | adenosine | neurotransmitter synthesis | neurotransmitter synthesis | release | release | inactivation | inactivation | receptor-mediated | receptor-mediated | second-messenger | second-messenger | neurotransmitter | neurotransmitter | antidepressant | antidepressant | brain lipid | brain lipid | blood brain barrier | blood brain barrier | parkinson's disease | parkinson's disease | seratonin | seratonin | depression | depression | glutamate | glutamate | aspartate | aspartate | NDMA | NDMA | drug | drug | drug discovery | drug discovery | pharmaceutical | pharmaceutical | signaling pathway | signaling pathway | receptor | receptor | spinal cord | spinal cord | marijuana | marijuana | adensosine | adensosine | histamine | histamine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.725 Music Perception and Cognition (MIT) HST.725 Music Perception and Cognition (MIT)

Description

Survey of perceptual and cognitive aspects of the psychology of music, with special emphasis on underlying neuronal and neurocomputational representations and mechanisms. Basic perceptual dimensions of hearing (pitch, timbre, consonance/roughness, loudness, auditory grouping) form salient qualities, contrasts, patterns and streams that are used in music to convey melody, harmony, rhythm and separate voices. Perceptual, cognitive, and neurophysiological aspects of the temporal dimension of music (rhythm, timing, duration, temporal expectation) are explored. Special topics include comparative, evolutionary, and developmental psychology of music perception, biological vs. cultural influences, Gestaltist vs. associationist vs. schema-based theories, comparison of music and speech perception, p Survey of perceptual and cognitive aspects of the psychology of music, with special emphasis on underlying neuronal and neurocomputational representations and mechanisms. Basic perceptual dimensions of hearing (pitch, timbre, consonance/roughness, loudness, auditory grouping) form salient qualities, contrasts, patterns and streams that are used in music to convey melody, harmony, rhythm and separate voices. Perceptual, cognitive, and neurophysiological aspects of the temporal dimension of music (rhythm, timing, duration, temporal expectation) are explored. Special topics include comparative, evolutionary, and developmental psychology of music perception, biological vs. cultural influences, Gestaltist vs. associationist vs. schema-based theories, comparison of music and speech perception, p

Subjects

music perception | music perception | music cognition | music cognition | music memory | music memory | pitch | pitch | timbre | timbre | consonance | consonance | harmony | harmony | tonality | tonality | melody | melody | expressive timing | expressive timing | rhythmic hierarchies | rhythmic hierarchies | auditory perception | auditory perception | auditory pathway | auditory pathway | musical acoustics | musical acoustics | power spectra | power spectra | psychophysics | psychophysics | neurocomputational models | neurocomputational models | neural correlates | neural correlates | music therapy | music therapy | synesthesia | synesthesia | absolute pitch | absolute pitch

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Neural Basis of Vision and Audtion (MIT) 9.04 Neural Basis of Vision and Audtion (MIT)

Description

This course is designed to ground the undergraduate student in the fields of vision and audition, which includes both speech and hearing. The neural bases of visual and auditory processing for perception and sensorimotor control is examined. Topics focus on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Studies in visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are also covered. This course is designed to ground the undergraduate student in the fields of vision and audition, which includes both speech and hearing. The neural bases of visual and auditory processing for perception and sensorimotor control is examined. Topics focus on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Studies in visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are also covered.

Subjects

visual system | visual system | eye-movement control | eye-movement control | retina | retina | lateral geniculate nucleus | lateral geniculate nucleus | visual cortex | visual cortex | the parallel channels | the parallel channels | color | color | motion | motion | depth | depth | form | form | neural control | neural control | visually guided eye movements | visually guided eye movements | middle ear | middle ear | cochlear | cochlear | otoacoustic emissions | otoacoustic emissions | cochlear ultrastructure and neuroanatomy | cochlear ultrastructure and neuroanatomy | cochlear ion homeostasis and synaptic transmission | cochlear ion homeostasis and synaptic transmission | noise-induced and age-related hearing loss | noise-induced and age-related hearing loss | neural degeneration | neural degeneration | neurophysiological | neurophysiological | ascending | ascending | descending | descending | auditory pathways auditory nerve | auditory pathways auditory nerve | cochlear nucleus | cochlear nucleus | inferior colliculus | inferior colliculus | olivocochlear system | olivocochlear system | functional brain imaging | functional brain imaging | tinnitus | tinnitus

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Inside 5 Shop, Elswick Works Inside 5 Shop, Elswick Works

Description

Subjects

blur | blur | brick | brick | industry | industry | wall | wall | stand | stand | construction | construction | war | war | industrial | industrial | factory | factory | russia | russia | britain | britain | parts | parts | military | military | debris | debris | pipe | pipe | platform | platform | machine | machine | ground | ground | tools | tools | beam | beam | doorway | doorway | worldwarii | worldwarii | pile | pile | weapon | weapon | cylinder | cylinder | ww2 | ww2 | works | works | marker | marker | artillery | artillery | guns | guns | worker | worker | products | products | ladder | ladder | pathway | pathway | global | global | worldwar2 | worldwar2 | newcastleupontyne | newcastleupontyne | fascinating | fascinating | admiralty | admiralty | digitalimage | digitalimage | wartime | wartime | secondworldwar | secondworldwar | manufacture | manufacture | worldwartwo | worldwartwo | rivertyne | rivertyne | industrialheritage | industrialheritage | elswick | elswick | armaments | armaments | blackandwhitephotograph | blackandwhitephotograph | scotswood | scotswood | 5shop | 5shop | lordarmstrong | lordarmstrong | vickersarmstrong | vickersarmstrong | elswickworks | elswickworks | williamgeorgearmstrong | williamgeorgearmstrong | workshopoftheworld | workshopoftheworld | glbal | glbal | 4inchguns | 4inchguns | scotswoodworks | scotswoodworks | vickersarmstrongcollection | vickersarmstrongcollection | 27july1942 | 27july1942 | 5118inchguns | 5118inchguns

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.08J Biological Chemistry II (MIT) 5.08J Biological Chemistry II (MIT)

Description

This course deals with a more advanced treatment of the biochemical mechanisms that underlie biological processes. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes. Topics include macromolecular machines for energy and force transduction, regulation of biosynthetic and degradative pathways, and the structure and function of nucleic acids. This course deals with a more advanced treatment of the biochemical mechanisms that underlie biological processes. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes. Topics include macromolecular machines for energy and force transduction, regulation of biosynthetic and degradative pathways, and the structure and function of nucleic acids.

Subjects

biochemistry | biochemistry | biological chemistry | biological chemistry | Rasmol | Rasmol | Deep Viewer | Deep Viewer | CHIME | CHIME | BLAST | BLAST | PDB | PDB | macromolecular machines | macromolecular machines | protein folding | protein folding | protein degradation | protein degradation | fatty acid synthases | fatty acid synthases | polyketide synthases | polyketide synthases | non-ribosomal polypeptide synthases | non-ribosomal polypeptide synthases | metal homeostasis | metal homeostasis | biochemical mechanisms | biochemical mechanisms | biochemical pathways | biochemical pathways | macromolecular interactions | macromolecular interactions | ribosome | ribosome | mRNA | mRNA | metabolic networking | metabolic networking | 5.08 | 5.08 | 7.08 | 7.08

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT) 9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. We focus on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); we also examine amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems and ion fluxes that they control. The involvement of particular neurotransmitters in human diseases is considered. This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. We focus on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); we also examine amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems and ion fluxes that they control. The involvement of particular neurotransmitters in human diseases is considered.

Subjects

Neurotransmitter | Neurotransmitter | antidepressant | antidepressant | brain lipid | brain lipid | blood brain barrier | blood brain barrier | dopamine | dopamine | parkinson's disease | parkinson's disease | serotonin | serotonin | depression | depression | glutamate | glutamate | aspartate | aspartate | NDMA | NDMA | drug | drug | drug discovery | drug discovery | pharmaceutical | pharmaceutical | signaling pathway | signaling pathway | receptor | receptor | spinal cord | spinal cord | marijuana | marijuana | adensosine | adensosine | histamine. | histamine.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.88J Protein Folding Problem (MIT)

Description

This course focuses on the mechanisms by which the amino acid sequence of polypeptide chains (proteins), determine their three-dimensional conformation. Topics in this course include sequence determinants of secondary structure, the folding of newly synthesized polypeptide chains within cells, folding intermediates aggregation and competing off-pathway reactions, and the unfolding and refolding of proteins in vitro. Additional topics covered are the role of helper proteins such as chaperonins and isomerases, protein recovery problems in the biotechnology industry, and diseases found associated with protein folding defects.

Subjects

amino acid sequence | polypeptide chains | sequence determinants | folding | synthesized polypeptide chains within cells | unfolding and refolding of proteins in vitro | folding intermediates aggregation | competing off-pathway reactions | chaperonins | isomerases | helper proteins | protein recovery problems | biotechnology industry | protein folding defects | 3-D conformation | globular proteins | fibrous proteins | kinetics | in vitro refolding | pathways | in vivo folding | synthesized proteins | aggregation | protein misfolding | human disease | protein folding | genome sequences | 7.88 | 5.48 | 7.24 | 10.543

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.453J Biomedical Information Technology (MIT) 20.453J Biomedical Information Technology (MIT)

Description

This course teaches the design of contemporary information systems for biological and medical data. Examples are chosen from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (e.g. C, C++, Java, Lisp, Perl, Python). A major term project is required of all students. This subject is open to motivated seniors having a strong interest in biomedical engineering and information system desig This course teaches the design of contemporary information systems for biological and medical data. Examples are chosen from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (e.g. C, C++, Java, Lisp, Perl, Python). A major term project is required of all students. This subject is open to motivated seniors having a strong interest in biomedical engineering and information system desig

Subjects

20.453 | 20.453 | 2.771 | 2.771 | HST.958 | HST.958 | imaging | imaging | medical imaging | medical imaging | metadata | metadata | molecular biology | molecular biology | medical records | medical records | DICOM | DICOM | RDF | RDF | OWL | OWL | SPARQL | SPARQL | SBML | SBML | CellML | CellML | semantic web | semantic web | BioHaystack | BioHaystack | database | database | schema | schema | ExperiBase | ExperiBase | genomics | genomics | proteomics | proteomics | bioinformatics | bioinformatics | computational biology | computational biology | clinical decision support | clinical decision support | clinical trial | clinical trial | microarray | microarray | gel electrophoresis | gel electrophoresis | diagnosis | diagnosis | pathway modeling | pathway modeling | XML | XML | SQL | SQL | relational database | relational database | biological data | biological data | ontologies | ontologies | drug development | drug development | drug discovery | drug discovery | drug target | drug target | pharmaceutical | pharmaceutical | gene sequencing | gene sequencing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.333 Urban Design Seminar (MIT) 11.333 Urban Design Seminar (MIT)

Description

This course is a requirement for completion of the Urban Design Certificate Program. It investigates the complex nature of 'successful' urban design and attempts to identify and evaluate examples of urban design that are at the leading edge of practice, anticipating the future. The seminar will deal with two parallel questions: what are the key trends that will shape the future form and function of cities, and how will these changes affect the role of the urban designer? The first part of the seminar focuses on the present, and the second part of the semester will consider the future. After the course surveys the landscape of contemporary urban design practice, the challenge it will pose to students will be to identify the trajectory of cities and city design from both physical and socia This course is a requirement for completion of the Urban Design Certificate Program. It investigates the complex nature of 'successful' urban design and attempts to identify and evaluate examples of urban design that are at the leading edge of practice, anticipating the future. The seminar will deal with two parallel questions: what are the key trends that will shape the future form and function of cities, and how will these changes affect the role of the urban designer? The first part of the seminar focuses on the present, and the second part of the semester will consider the future. After the course surveys the landscape of contemporary urban design practice, the challenge it will pose to students will be to identify the trajectory of cities and city design from both physical and socia

Subjects

urban design | urban design | design competitions | design competitions | past and future design trends | past and future design trends | elderly housing | elderly housing | neighborhood design | neighborhood design | housing and technology | housing and technology | workplace design | workplace design | mediated space | mediated space | public spaces and technology | public spaces and technology | schools and technology | schools and technology | cultural regeneration | cultural regeneration | arts districts | arts districts | museums | museums | interpretive pathways | interpretive pathways | waterfront design | waterfront design | natural systems | natural systems | environmental sustainability | environmental sustainability | urban design education | urban design education

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Cancer Biology: From Basic Research to the Clinic (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In 1971, President Nixon declared the "War on Cancer," but after three decades the war is still raging. How much progress have we made toward winning the war and what are we doing to improve the fight? Understanding the molecular and cellular events involved in tumor formation, progression, and metastasis is crucial to the development of innovative therapy for cancer patients. Insights into these processes have been gleaned through basic research using biochemical, molecular, and genetic ana

Subjects

cancer | tumor | metastasis | genetic analysis | cancer biology | model organisms | genetic pathways | uncontrolled growth | tumor suppressor genes | oncogenes | tumor initiation | cell cycle | chromosomal aberration | apoptosis | cell death | signal transduction pathways | proto-oncogene | mutation | DNA mismatch repair | telomeres | mouse models | tissue specificity | malignancy | stem cells | therapeutic resistance | differentiation | caner research | cancer therapeutics | chemotherapy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.913-A Intensive Neuroanatomy (MIT)

Description

The course will start with an overview of the central and peripheral nervous systems (CNS and PNS), the development of their structure and major divisions. The major functional components of the CNS will then be reviewed individually. Topography, functional distribution of nerve cell bodies, ascending and descending tracts in the spinal cord. Brainstem organization and functional components, including cranial nerve nuclei, ascending / descending pathways, amine-containing cells, structure and information flow in the cerebellar and vestibular systems. Distribution of the cranial nerves, resolution of their skeletal and branchial arch components. Functional divisions of the Diencephalon and Telencephalon. The course will then continue with how these various CNS pieces and parts work together

Subjects

peripheral nervous systems | CNS | PNS | structure | nerve cell bodies | ascending and descending tracts | spinal cord | brainstem | cranial nerve nuclei | ascending/descending pathways | amine-containing cells | cerebellar | vestibular systems | cranial nerves | skeletal and branchial arch | diencephalon | Telencephalon | Motor systems | motor neurons | motor units | medial | lateral pathways | sensory systems | visual | auditory | somatosensory | olfaction | limbic system | autonomic control | Papez circuit | neocortex

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.721 The Peripheral Auditory System (MIT) HST.721 The Peripheral Auditory System (MIT)

Description

In this course, experimental approaches to the study of hearing and deafness are presented through lectures, laboratory exercises and discussions of the primary literature on the auditory periphery. Topics include inner-ear development, functional anatomy of the inner ear, cochlear mechanics and micromechanics, mechano-electric transduction by hair cells, outer hair cells' electromotility and the cochlear amplifier, otoacoustic emissions, synaptic transmission, stimulus coding in auditory nerve responses, efferent control of cochlear function, damage and repair of hair-cell organs, and sensorineural hearing loss. In this course, experimental approaches to the study of hearing and deafness are presented through lectures, laboratory exercises and discussions of the primary literature on the auditory periphery. Topics include inner-ear development, functional anatomy of the inner ear, cochlear mechanics and micromechanics, mechano-electric transduction by hair cells, outer hair cells' electromotility and the cochlear amplifier, otoacoustic emissions, synaptic transmission, stimulus coding in auditory nerve responses, efferent control of cochlear function, damage and repair of hair-cell organs, and sensorineural hearing loss.

Subjects

peripheral auditory system | peripheral auditory system | hair cells | hair cells | frequency tuning | frequency tuning | cochlear mechanics | cochlear mechanics | mechano-electric transduction | mechano-electric transduction | outer hair cells | outer hair cells | electromotility | electromotility | cochlear amplifier | cochlear amplifier | endocochlear potential | endocochlear potential | inner ear | inner ear | ear | ear | afferent synaptic transmission | afferent synaptic transmission | auditory nerve response | auditory nerve response | auditory pathway | auditory pathway | middle ear | middle ear

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Analysis of Biomolecular and Cellular Systems (MIT) 20.320 Analysis of Biomolecular and Cellular Systems (MIT)

Description

This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

biological engineering | biological engineering | kinase | kinase | PyMOL | PyMOL | PyRosetta | PyRosetta | MATLAB | MATLAB | Michaelis-Menten | Michaelis-Menten | bioreactor | bioreactor | bromodomain | bromodomain | protein-ligand interactions | protein-ligand interactions | titration analysis | titration analysis | fractional separation | fractional separation | isothermal titration calorimetry | isothermal titration calorimetry | ITC | ITC | mass spectrometry | mass spectrometry | MS | MS | co-immunoprecipitation | co-immunoprecipitation | Co-IP | Co-IP | Forster resonance energy transfer | Forster resonance energy transfer | FRET | FRET | primary ligation assay | primary ligation assay | PLA | PLA | surface plasmon resonance | surface plasmon resonance | SPR | SPR | enzyme kinetics | enzyme kinetics | kinase engineering | kinase engineering | competitive inhibition | competitive inhibition | epidermal growth factor receptor | epidermal growth factor receptor | mitogen-activated protein kinase | mitogen-activated protein kinase | MAPK | MAPK | genome editing | genome editing | Imatinib | Imatinib | Gleevec | Gleevec | Glivec | Glivec | drug delivery | drug delivery | kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Diabetes eBook

Description

This was designed using Articulate Storyline. The .story file is included so if you have access to Articulate Storyline you are able to edit this resource. If you do not have access to use Articulate Storyline you will able to use the zip file to host it yourself.

Subjects

diabetes | insulin pathways | glucagon pathways | glycolysis | glycogen synthesis | fatty acid synthesis | gluconeogenesis | glycogenolysis | dentistry | A000

License

Attribution-NonCommercial-ShareAlike 3.0 Unported Attribution-NonCommercial-ShareAlike 3.0 Unported http://creativecommons.org/licenses/by-nc-sa/3.0/ http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.720 Physiology of the Ear (MIT) HST.720 Physiology of the Ear (MIT)

Description

Topics for this course are based primarily on reading and discussions of original research literature that cover the analysis as well as the underlying physical and physiological mechanisms of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders. Topics for this course are based primarily on reading and discussions of original research literature that cover the analysis as well as the underlying physical and physiological mechanisms of acoustic signals in the auditory periphery. Topics include the acoustics, mechanics, and hydrodynamics of sound transmission; the biophysical basis for cochlear amplification; the physiology of hair-cell transduction and synaptic transmission; efferent feedback control; the analysis and coding of simple and complex sounds by the inner ear; and the physiological bases for hearing disorders.

Subjects

cochlear physiology | cochlear physiology | cochlea | cochlea | ear | ear | ear canal | ear canal | inner ear | inner ear | middle ear | middle ear | outer ear | outer ear | auditory pathway | auditory pathway | auditory nerve | auditory nerve | auditory brainstem | auditory brainstem | acoustic coupling | acoustic coupling | auditory periphery | auditory periphery | acoustic signals | acoustic signals | sound transmission | sound transmission | cochlear amplification | cochlear amplification | synaptic transmission | synaptic transmission | hair cell transduction | hair cell transduction | efferent feedback control | efferent feedback control | hearing disorders | hearing disorders | hearing | hearing | cochlear mechanics | cochlear mechanics | basilar membrane | basilar membrane | auditory nerve fiber response | auditory nerve fiber response | otoacoustic emissions | otoacoustic emissions | outer hair cell | outer hair cell

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.746 Marine Organic Geochemistry (MIT) 12.746 Marine Organic Geochemistry (MIT)

Description

This class is designed to provide the student with a global to molecular-level perspective of organic matter cycling in the oceans and marine sediments. Topics include: Organic matter (C,N,P) composition, reactivity and budgets within, and fluxes through, major ocean reservoirs; microbial recycling pathways for organic matter; models of organic matter degradation and preservation; role of anoxia in organic matter burial; relationships between dissolved and particulate (sinking and suspended) organic matter; methods for characterization of sedimentary organic matter; and application of biological markers as tools in oceanography. Both structural and isotopic aspects are covered. This class is designed to provide the student with a global to molecular-level perspective of organic matter cycling in the oceans and marine sediments. Topics include: Organic matter (C,N,P) composition, reactivity and budgets within, and fluxes through, major ocean reservoirs; microbial recycling pathways for organic matter; models of organic matter degradation and preservation; role of anoxia in organic matter burial; relationships between dissolved and particulate (sinking and suspended) organic matter; methods for characterization of sedimentary organic matter; and application of biological markers as tools in oceanography. Both structural and isotopic aspects are covered.

Subjects

Marine | Marine | organic geochemistry | organic geochemistry | distribution | distribution | organic carbon | organic carbon | marine sediments | marine sediments | global | global | molecular-level perspective | molecular-level perspective | mineralization | mineralization | preservation | preservation | OC | OC | major reservoirs | major reservoirs | microbial recycling pathways | microbial recycling pathways | degradation | degradation | anoxia | anoxia | OC burial | OC burial | dissolved | dissolved | sedimentary organic matter | sedimentary organic matter | biological markers | biological markers | oceanography | oceanography

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata