Searching for phagocytosis : 8 results found | RSS Feed for this search

7.340 Under the Radar Screen: How Bugs Trick Our Immune Defenses (MIT) 7.340 Under the Radar Screen: How Bugs Trick Our Immune Defenses (MIT)

Description

In this course, we will explore the specific ways by which microbes defeat our immune system and the molecular mechanisms that are under attack (phagocytosis, the ubiquitin/proteasome pathway, MHC I/II antigen presentation). Through our discussion and dissection of the primary research literature, we will explore aspects of host-pathogen interactions. We will particularly emphasize the experimental techniques used in the field and how to read and understand research data. Technological advances in the fight against microbes will also be discussed, with specific examples. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about In this course, we will explore the specific ways by which microbes defeat our immune system and the molecular mechanisms that are under attack (phagocytosis, the ubiquitin/proteasome pathway, MHC I/II antigen presentation). Through our discussion and dissection of the primary research literature, we will explore aspects of host-pathogen interactions. We will particularly emphasize the experimental techniques used in the field and how to read and understand research data. Technological advances in the fight against microbes will also be discussed, with specific examples. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about

Subjects

HIV | HIV | mycobacterium tuberculosis | mycobacterium tuberculosis | malaria | malaria | influenza | influenza | immune system | immune system | pathogens | pathogens | viruses | viruses | bacteria | bacteria | parasites | parasites | microbes | microbes | phagocytosis | phagocytosis | ubiquitin/proteasome pathway | ubiquitin/proteasome pathway | MHC I/II antigen presentation | MHC I/II antigen presentation | Salmonella | Salmonella | pathogen-associated molecular patterns | pathogen-associated molecular patterns | PAMP | PAMP | Toll-like receptors | Toll-like receptors | TLR | TLR | Vaccinia virus | Vaccinia virus | Proteasome | Proteasome | Ubiquitin; deubiquinating enzymes | Ubiquitin; deubiquinating enzymes | DUB | DUB | Herpes simplex virus | Herpes simplex virus | HSV | HSV | Yersinia | Yersinia | viral budding | viral budding | Human cytomegalovirus | Human cytomegalovirus | HCMV | HCMV | Histocompatiblity | Histocompatiblity | AIDS | AIDS | Kaposi Sarcoma-Associated Herpes virus | Kaposi Sarcoma-Associated Herpes virus | Mixoma virus | Mixoma virus | Epstein Barr virus | Epstein Barr virus | EBV | EBV | Burkitt?s B cell lymphoma | Burkitt?s B cell lymphoma

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.345 Evolution of the Immune System (MIT) 7.345 Evolution of the Immune System (MIT)

Description

In this course, evolutionary pathways that have led to the development of innate and adaptive immunity are analyzed, the conserved and unique features of the immune response from bacteria to higher vertebrates is traced, and factors, such as adaptive changes in pathogens that have shaped the evolution of immune system are identified.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In this course, evolutionary pathways that have led to the development of innate and adaptive immunity are analyzed, the conserved and unique features of the immune response from bacteria to higher vertebrates is traced, and factors, such as adaptive changes in pathogens that have shaped the evolution of immune system are identified.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting.

Subjects

immune system | immune system | immunology | immunology | evolution of immune system | evolution of immune system | immune defence | immune defence | phagocytosis | phagocytosis | innate immunity | innate immunity | adaptive immunity | adaptive immunity | immunological memory | immunological memory | immune response | immune response | defence mechanisms | defence mechanisms | pathogens | pathogens | self discrimination | self discrimination | non-self discrimination | non-self discrimination | recognition | recognition | immune receptors | immune receptors | antigen | antigen

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Immune Evasion: How Sneaky Pathogens Avoid Host Surveillance (MIT) 7.340 Immune Evasion: How Sneaky Pathogens Avoid Host Surveillance (MIT)

Description

Every infection consists of a battle between the invading pathogen and the resisting host. To be successful, a pathogen must escape the many defenses of the host immune system until it can replicate and spread to another host. A pathogen must prevent one of three stages of immune function: detection, activation, or effector function. Examples of disease-specific immune evasion and the mechanisms used by pathogens to prevail over their hosts' immune systems are discussed. Also considered is what these host-pathogen interactions reveal about the normal function of the immune system and basic cell biological processes, such as protein maturation and degradation. Every infection consists of a battle between the invading pathogen and the resisting host. To be successful, a pathogen must escape the many defenses of the host immune system until it can replicate and spread to another host. A pathogen must prevent one of three stages of immune function: detection, activation, or effector function. Examples of disease-specific immune evasion and the mechanisms used by pathogens to prevail over their hosts' immune systems are discussed. Also considered is what these host-pathogen interactions reveal about the normal function of the immune system and basic cell biological processes, such as protein maturation and degradation.

Subjects

immunology | immunology | immune system | immune system | immune evasion | immune evasion | pathogen | pathogen | effector function | effector function | infections | infections | Human cytomegalovirus | Human cytomegalovirus | Human Immunodeficiency Virus | Human Immunodeficiency Virus | CD4 cells | CD4 cells | CD8 cells | CD8 cells | T cells | T cells | surace receptors | surace receptors | cell lysis | cell lysis | host-pathogen interactions | host-pathogen interactions | host surveillance | host surveillance | antibodies | antibodies | MHC class I | MHC class I | blood-borne pathogens | blood-borne pathogens | macrophages | macrophages | phagocytosis | phagocytosis | endocytosis | endocytosis | degradation | degradation | antigen | antigen | apoptosis | apoptosis | cytokines | cytokines | immune response | immune response

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.345 Evolution of the Immune System (MIT)

Description

In this course, evolutionary pathways that have led to the development of innate and adaptive immunity are analyzed, the conserved and unique features of the immune response from bacteria to higher vertebrates is traced, and factors, such as adaptive changes in pathogens that have shaped the evolution of immune system are identified.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting.

Subjects

immune system | immunology | evolution of immune system | immune defence | phagocytosis | innate immunity | adaptive immunity | immunological memory | immune response | defence mechanisms | pathogens | self discrimination | non-self discrimination | recognition | immune receptors | antigen

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Intracellular Transport

Description

A chapter which describes the pathways and mechanisms of vesicular traffic between different cellular compartments. It also includes a basic description of the cytoskeleton, and its role in intracellular transport. The unit contains 45 figures and is intended as ~7 hours study at level 2/3. It also provides background reading for the experimental investigation 'Immuno-electron Microscopy' (http://open.jorum.ac.uk/xmlui/handle/123456789/1580).

Subjects

bioukoer | ukoer | cytoskeleton | cell compartments | vesicles | endocytosis | secretory vesicles | exocytosis | phagocytosis | microtubules | microfilaments | motor proteins | signal sequences | protein glycosylation | Biological sciences | C000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Under the Radar Screen: How Bugs Trick Our Immune Defenses (MIT)

Description

In this course, we will explore the specific ways by which microbes defeat our immune system and the molecular mechanisms that are under attack (phagocytosis, the ubiquitin/proteasome pathway, MHC I/II antigen presentation). Through our discussion and dissection of the primary research literature, we will explore aspects of host-pathogen interactions. We will particularly emphasize the experimental techniques used in the field and how to read and understand research data. Technological advances in the fight against microbes will also be discussed, with specific examples. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about

Subjects

HIV | mycobacterium tuberculosis | malaria | influenza | immune system | pathogens | viruses | bacteria | parasites | microbes | phagocytosis | ubiquitin/proteasome pathway | MHC I/II antigen presentation | Salmonella | pathogen-associated molecular patterns | PAMP | Toll-like receptors | TLR | Vaccinia virus | Proteasome | Ubiquitin; deubiquinating enzymes | DUB | Herpes simplex virus | HSV | Yersinia | viral budding | Human cytomegalovirus | HCMV | Histocompatiblity | AIDS | Kaposi Sarcoma-Associated Herpes virus | Mixoma virus | Epstein Barr virus | EBV | Burkitt?s B cell lymphoma

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.345 Evolution of the Immune System (MIT)

Description

In this course, evolutionary pathways that have led to the development of innate and adaptive immunity are analyzed, the conserved and unique features of the immune response from bacteria to higher vertebrates is traced, and factors, such as adaptive changes in pathogens that have shaped the evolution of immune system are identified.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting.

Subjects

immune system | immunology | evolution of immune system | immune defence | phagocytosis | innate immunity | adaptive immunity | immunological memory | immune response | defence mechanisms | pathogens | self discrimination | non-self discrimination | recognition | immune receptors | antigen

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Immune Evasion: How Sneaky Pathogens Avoid Host Surveillance (MIT)

Description

Every infection consists of a battle between the invading pathogen and the resisting host. To be successful, a pathogen must escape the many defenses of the host immune system until it can replicate and spread to another host. A pathogen must prevent one of three stages of immune function: detection, activation, or effector function. Examples of disease-specific immune evasion and the mechanisms used by pathogens to prevail over their hosts' immune systems are discussed. Also considered is what these host-pathogen interactions reveal about the normal function of the immune system and basic cell biological processes, such as protein maturation and degradation.

Subjects

immunology | immune system | immune evasion | pathogen | effector function | infections | Human cytomegalovirus | Human Immunodeficiency Virus | CD4 cells | CD8 cells | T cells | surace receptors | cell lysis | host-pathogen interactions | host surveillance | antibodies | MHC class I | blood-borne pathogens | macrophages | phagocytosis | endocytosis | degradation | antigen | apoptosis | cytokines | immune response

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata