Searching for pharmacology : 69 results found | RSS Feed for this search

1 2 3

Curated collection of Pharmacology resources

Description

This is an evaluated collection of links to resources for learning and teaching subjects relating to Pharmacology. This forms part of the UK Centre for Bioscience OeRBITAL project.

Subjects

ukoer | pharmacology | oerbital | autonomic pharmacology | cardiovascular pharmacology | clinical pharmacology and therapeutics | drug development | experimental preparations and techniques | pharmacogenomics | pharmacological principles | pharmacology podcasts | Biological sciences | C000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.98 Neuropharmacology (MIT) 9.98 Neuropharmacology (MIT)

Description

The neuropharmacology course will discuss the drug-induced changes in functioning of the nervous system. The specific focus of this course will be to provide a description of the cellular and molecular actions of drugs on synaptic transmission. This course will also refer to specific diseases of the nervous system and their treatment in addition to giving an overview of the techniques used for the study of neuropharmacology. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. The neuropharmacology course will discuss the drug-induced changes in functioning of the nervous system. The specific focus of this course will be to provide a description of the cellular and molecular actions of drugs on synaptic transmission. This course will also refer to specific diseases of the nervous system and their treatment in addition to giving an overview of the techniques used for the study of neuropharmacology. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subjects

antidepressant | antidepressant | psychopharmacology | psychopharmacology | neurology | neurology | neuroscience | neuroscience | pharmacology | pharmacology | synapse | synapse | seratonin | seratonin | drug | drug | disposition | disposition | tolerance | tolerance | physical dependence model | physical dependence model | depot binding | depot binding | classic antipsychotic drugs | classic antipsychotic drugs | experimental substance use | experimental substance use | anabolic steroid dependence | anabolic steroid dependence | biobehavioral effects | biobehavioral effects | positive reinforcement model | positive reinforcement model | phenethylamine hallucinogens | phenethylamine hallucinogens | discriminative stimulus effects | discriminative stimulus effects | nicotine reinforcement | nicotine reinforcement | somatodendritic autoreceptors | somatodendritic autoreceptors | selected brain areas | selected brain areas | many psychoactive drugs | many psychoactive drugs | terminal autoreceptors | terminal autoreceptors | abstinence signs | abstinence signs | motor side effects | motor side effects | drug reinforcement | drug reinforcement | other psychostimulants | other psychostimulants | postsynaptic cell | postsynaptic cell | nicotine tolerance | nicotine tolerance | abstinent smokers | abstinent smokers | behavioral tolerance | behavioral tolerance | chronic drug use | chronic drug use | susceptibility models | susceptibility models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

24.08J Philosophical Issues in Brain Science (MIT) 24.08J Philosophical Issues in Brain Science (MIT)

Description

Includes audio/video content: AV special element video. This course provides an introduction to important philosophical questions about the mind, specifically those that are intimately connected with contemporary psychology and neuroscience. Are our concepts innate or are they acquired by experience? And what does it even mean to call a concept 'innate'? Are 'mental images' pictures in the head? Is color in the mind or in the world? Is the mind nothing more than the brain? Can there be a science of consciousness? The course includes guest lectures by philosophers and cognitive scientists. Includes audio/video content: AV special element video. This course provides an introduction to important philosophical questions about the mind, specifically those that are intimately connected with contemporary psychology and neuroscience. Are our concepts innate or are they acquired by experience? And what does it even mean to call a concept 'innate'? Are 'mental images' pictures in the head? Is color in the mind or in the world? Is the mind nothing more than the brain? Can there be a science of consciousness? The course includes guest lectures by philosophers and cognitive scientists.

Subjects

brain | brain | philosophy | philosophy | science | science | holism | holism | cultural object | cultural object | contemporary media | contemporary media | society | society | cultural assumptions | cultural assumptions | neuroscience | neuroscience | anthropology | anthropology | history | history | semiotics | semiotics | cognitive sciences | cognitive sciences | historical views | historical views | digital images | digital images | psychopharmacology | psychopharmacology | mental illness | mental illness | neurotransmitters | neurotransmitters | brain science | brain science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Getting the dose right

Description

Too high a dose can result in toxicity and side-effects, too low a dose can cause the illness to come back and at worse develop resistance. Professor Joel Tarning is Head of Clinical Pharmacology in our MORU Unit in Bangkok, Thailand. He's working towards drug dose-optimisation using novel pharmacometric modelling approaches. He is particularly interested in antimalarial treatments for children and pregnant women. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

pharmacology | malaria | toxicity | drug resistance | pharmacology | malaria | toxicity | drug resistance

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Getting the dose right

Description

Too high a dose can result in toxicity and side-effects, too low a dose can cause the illness to come back and at worse develop resistance. Professor Joel Tarning is Head of Clinical Pharmacology in our MORU Unit in Bangkok, Thailand. He's working towards drug dose-optimisation using novel pharmacometric modelling approaches. He is particularly interested in antimalarial treatments for children and pregnant women. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

pharmacology | malaria | toxicity | drug resistance | pharmacology | malaria | toxicity | drug resistance

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.201 Mechanisms of Drug Actions (MIT) 20.201 Mechanisms of Drug Actions (MIT)

Description

This course addresses the scientific basis for the development of new drugs. The first half of the semester begins with an overview of the drug discovery process, followed by fundamental principles of pharmacokinetics, pharmacodynamics, metabolism, and the mechanisms by which drugs cause therapeutic and toxic responses. The second half of the semester applies those principles to case studies and literature discussions of current problems with specific drugs, drug classes, and therapeutic targets. This course addresses the scientific basis for the development of new drugs. The first half of the semester begins with an overview of the drug discovery process, followed by fundamental principles of pharmacokinetics, pharmacodynamics, metabolism, and the mechanisms by which drugs cause therapeutic and toxic responses. The second half of the semester applies those principles to case studies and literature discussions of current problems with specific drugs, drug classes, and therapeutic targets.

Subjects

drugs | drugs | medicine | medicine | pharmaceutical | pharmaceutical | pharmacology | pharmacology | toxicology | toxicology | drug actions | drug actions | therapeutics | therapeutics | histology | histology | pathophysiology | pathophysiology | drug therapy | drug therapy | drug transporters | drug transporters | drug metabolism | drug metabolism | drug toxicity | drug toxicity | drug development | drug development | uptake | uptake | transport | transport | case study | case study | biochemistry | biochemistry | Pharmacokinetics | Pharmacokinetics | Pharmacogenetics | Pharmacogenetics | Omeprazole | Omeprazole | antibiotics | antibiotics | Oncology | Oncology | Statins | Statins | Sarilumab | Sarilumab | cystic fibrosis | cystic fibrosis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.98 Neuropharmacology (MIT)

Description

The neuropharmacology course will discuss the drug-induced changes in functioning of the nervous system. The specific focus of this course will be to provide a description of the cellular and molecular actions of drugs on synaptic transmission. This course will also refer to specific diseases of the nervous system and their treatment in addition to giving an overview of the techniques used for the study of neuropharmacology. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subjects

antidepressant | psychopharmacology | neurology | neuroscience | pharmacology | synapse | seratonin | drug | disposition | tolerance | physical dependence model | depot binding | classic antipsychotic drugs | experimental substance use | anabolic steroid dependence | biobehavioral effects | positive reinforcement model | phenethylamine hallucinogens | discriminative stimulus effects | nicotine reinforcement | somatodendritic autoreceptors | selected brain areas | many psychoactive drugs | terminal autoreceptors | abstinence signs | motor side effects | drug reinforcement | other psychostimulants | postsynaptic cell | nicotine tolerance | abstinent smokers | behavioral tolerance | chronic drug use | susceptibility models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Neurotransmitters (MIT) Neurotransmitters (MIT)

Description

Subject examines the brain as a cultural object in contemporary media, science, and society. Explores cultural assumptions about neuroscience by drawing on anthropology, history, semiotics, and the cognitive sciences. Topics include historical views of the brain; digital images of the brain; psychopharmacology; mental illness; neurotransmitters; and the culture of brain science. Class assignments include three brief analytical papers and one oral presentation. Subject examines the brain as a cultural object in contemporary media, science, and society. Explores cultural assumptions about neuroscience by drawing on anthropology, history, semiotics, and the cognitive sciences. Topics include historical views of the brain; digital images of the brain; psychopharmacology; mental illness; neurotransmitters; and the culture of brain science. Class assignments include three brief analytical papers and one oral presentation.

Subjects

brain | brain | cultural object | cultural object | contemporary media | contemporary media | science | science | society | society | cultural assumptions | cultural assumptions | neuroscience | neuroscience | anthropology | anthropology | history | history | semiotics | semiotics | cognitive sciences | cognitive sciences | historical views | historical views | digital images | digital images | psychopharmacology | psychopharmacology | mental illness | mental illness | neurotransmitters | neurotransmitters | brain science | brain science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.52-B Topics in Brain and Cognitive Sciences Human Ethology (MIT) 9.52-B Topics in Brain and Cognitive Sciences Human Ethology (MIT)

Description

Survey and special topics designed for students in Brain and Cognitive Sciences. Emphasizes ethological studies of natural behavior patterns and their analysis in laboratory work, with contributions from field biology (mammology, primatology), sociobiology, and comparative psychology. Stresses human behavior but also includes major contributions from studies of other animals. Survey and special topics designed for students in Brain and Cognitive Sciences. Emphasizes ethological studies of natural behavior patterns and their analysis in laboratory work, with contributions from field biology (mammology, primatology), sociobiology, and comparative psychology. Stresses human behavior but also includes major contributions from studies of other animals.

Subjects

Behavioral modification | Behavioral modification | ethology | ethology | sociobiology | sociobiology | learning | learning | Social Status | Social Status | Cross-Cultural Differences | Cross-Cultural Differences | Persuasion | Persuasion | Politics | Politics | Individual | Individual | Sexuality | Sexuality | Dimorphisms in body and behavior | Dimorphisms in body and behavior | social organization | social organization | dominance structures | dominance structures | evolution of sexual signals | evolution of sexual signals | emancipation | emancipation | Mating | Mating | reproduction | reproduction | Emotion | Emotion | Facial Expression | Facial Expression | Displays | Displays | General Non-Verbal Communication | General Non-Verbal Communication | Sex Modeling behaviors | Sex Modeling behaviors | Machine interfaces | Machine interfaces | Cognitive ethology | Cognitive ethology | Comparative cognition | Comparative cognition | Signs | Signs | Symbols | Symbols | pharmacology | pharmacology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.S10 Drugs and the Brain (MIT) ES.S10 Drugs and the Brain (MIT)

Description

This class is a multidisciplinary introduction to pharmacology, neurotransmitters, drug mechanisms, and brain diseases from addiction to schizophrenia. From Abilify® to Zyrtec®, the world is full of fascinating drugs. If you are poisoned by sarin nerve gas, you may be able to save your life by huffing some BZ nerve gas. This class will explain that chemical curiosity, along with a host of other interesting tidbits of pharmacology. The structure of the class interleaves basic concepts with specific examples and entertaining tangents, so it is not loaded with boring abstract theory. In the first class you will learn what a neurotransmitter is, and you will immediately apply that knowledge when we discuss the mechanism of caffeine. The class is highly multidisciplinary, including topi This class is a multidisciplinary introduction to pharmacology, neurotransmitters, drug mechanisms, and brain diseases from addiction to schizophrenia. From Abilify® to Zyrtec®, the world is full of fascinating drugs. If you are poisoned by sarin nerve gas, you may be able to save your life by huffing some BZ nerve gas. This class will explain that chemical curiosity, along with a host of other interesting tidbits of pharmacology. The structure of the class interleaves basic concepts with specific examples and entertaining tangents, so it is not loaded with boring abstract theory. In the first class you will learn what a neurotransmitter is, and you will immediately apply that knowledge when we discuss the mechanism of caffeine. The class is highly multidisciplinary, including topi

Subjects

brain | brain | drugs | drugs | pharmacology | pharmacology | neurotransmitters | neurotransmitters | drug mechanisms | drug mechanisms | brain disease | brain disease | addiction | addiction | schizophrenia | schizophrenia

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ES.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.201 Advanced Animal Behavior (MIT) 9.201 Advanced Animal Behavior (MIT)

Description

The course includes survey and special topics designed for graduate students in the brain and cognitive sciences. It emphasizes ethological studies of natural behavior patterns and their analysis in laboratory work, with contributions from field biology (mammology, primatology), sociobiology, and comparative psychology. It stresses mammalian behavior but also includes major contributions from studies of other vertebrates and of invertebrates. It covers some applications of animal-behavior knowledge to neuropsychology and behavioral pharmacology. The course includes survey and special topics designed for graduate students in the brain and cognitive sciences. It emphasizes ethological studies of natural behavior patterns and their analysis in laboratory work, with contributions from field biology (mammology, primatology), sociobiology, and comparative psychology. It stresses mammalian behavior but also includes major contributions from studies of other vertebrates and of invertebrates. It covers some applications of animal-behavior knowledge to neuropsychology and behavioral pharmacology.

Subjects

ethology | ethology | mammology | mammology | primatology | primatology | sociobiology | sociobiology | comparative psychology | comparative psychology | mammalian behavior | mammalian behavior | vertebrates | vertebrates | invertebrates | invertebrates | animal-behavior | animal-behavior | neuropsychology | neuropsychology | pharmacology | pharmacology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.512 Genomic Medicine (MIT) HST.512 Genomic Medicine (MIT)

Description

Includes audio/video content: AV lectures. This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lec Includes audio/video content: AV lectures. This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lec

Subjects

genomics | genomics | genomic medicine | genomic medicine | genetics | genetics | genomic measurement | genomic measurement | microarray | microarray | informatics | informatics | bioinformatics | bioinformatics | computational biology | computational biology | machine learning | machine learning | pharmacogenomics | pharmacogenomics | complex traits | complex traits | individual pharmacology | individual pharmacology | cancer diagnostics | cancer diagnostics | genetic disease | genetic disease | biomedical | biomedical | genomes | genomes | bioethics | bioethics | integrative genomics | integrative genomics | genomic technologies | genomic technologies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.52-B Topics in Brain and Cognitive Sciences Human Ethology (MIT) 9.52-B Topics in Brain and Cognitive Sciences Human Ethology (MIT)

Description

Survey and special topics designed for students in Brain and Cognitive Sciences. Emphasizes ethological studies of natural behavior patterns and their analysis in laboratory work, with contributions from field biology (mammology, primatology), sociobiology, and comparative psychology. Stresses human behavior but also includes major contributions from studies of other animals. Survey and special topics designed for students in Brain and Cognitive Sciences. Emphasizes ethological studies of natural behavior patterns and their analysis in laboratory work, with contributions from field biology (mammology, primatology), sociobiology, and comparative psychology. Stresses human behavior but also includes major contributions from studies of other animals.

Subjects

Behavioral modification | Behavioral modification | ethology | ethology | sociobiology | sociobiology | learning | learning | Social Status | Social Status | Cross-Cultural Differences | Cross-Cultural Differences | Persuasion | Persuasion | Politics | Politics | Individual | Individual | Sexuality | Sexuality | Dimorphisms in body and behavior | Dimorphisms in body and behavior | social organization | social organization | dominance structures | dominance structures | evolution of sexual signals | evolution of sexual signals | emancipation | emancipation | Mating | Mating | reproduction | reproduction | Emotion | Emotion | Facial Expression | Facial Expression | Displays | Displays | General Non-Verbal Communication | General Non-Verbal Communication | Sex Modeling behaviors | Sex Modeling behaviors | Machine interfaces | Machine interfaces | Cognitive ethology | Cognitive ethology | Comparative cognition | Comparative cognition | Signs | Signs | Symbols | Symbols | pharmacology | pharmacology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.201 Advanced Animal Behavior (MIT) 9.201 Advanced Animal Behavior (MIT)

Description

The course includes survey and special topics designed for graduate students in the brain and cognitive sciences. It emphasizes ethological studies of natural behavior patterns and their analysis in laboratory work, with contributions from field biology (mammology, primatology), sociobiology, and comparative psychology. It stresses mammalian behavior but also includes major contributions from studies of other vertebrates and of invertebrates. It covers some applications of animal-behavior knowledge to neuropsychology and behavioral pharmacology. The course includes survey and special topics designed for graduate students in the brain and cognitive sciences. It emphasizes ethological studies of natural behavior patterns and their analysis in laboratory work, with contributions from field biology (mammology, primatology), sociobiology, and comparative psychology. It stresses mammalian behavior but also includes major contributions from studies of other vertebrates and of invertebrates. It covers some applications of animal-behavior knowledge to neuropsychology and behavioral pharmacology.

Subjects

ethology | ethology | mammology | mammology | primatology | primatology | sociobiology | sociobiology | comparative psychology | comparative psychology | mammalian behavior | mammalian behavior | vertebrates | vertebrates | invertebrates | invertebrates | animal-behavior | animal-behavior | neuropsychology | neuropsychology | pharmacology | pharmacology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.236 Exploring Pharmacology (MIT) SP.236 Exploring Pharmacology (MIT)

Description

From Abilify to Zyrtec, the world is full of interesting drugs. Such substances have cured diseases, started wars, and ended careers. This seminar will explain how drugs can elicit a range of medicinal and recreational effects. Planned topics include over-the-counter drugs and "dietary supplements," drugs of abuse, treatments for neurological disorders, psychiatric medications, and many more. Prior experience is neither expected nor required, but student participation is essential. From Abilify to Zyrtec, the world is full of interesting drugs. Such substances have cured diseases, started wars, and ended careers. This seminar will explain how drugs can elicit a range of medicinal and recreational effects. Planned topics include over-the-counter drugs and "dietary supplements," drugs of abuse, treatments for neurological disorders, psychiatric medications, and many more. Prior experience is neither expected nor required, but student participation is essential.

Subjects

pharmacology | pharmacology | central nervous system | central nervous system | neurotransmitters | neurotransmitters | dopamine | dopamine | Parkinson's | Parkinson's | ADHD | ADHD | schizophrenia | schizophrenia | serotonin | serotonin | alcohol | alcohol | barbituates | barbituates | LSD | LSD | acetylcholine | acetylcholine | endocannabinoids | endocannabinoids | endocrine systems | endocrine systems | norepinephrine | norepinephrine | opioids | opioids

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.151 Principles of Pharmacology (MIT) HST.151 Principles of Pharmacology (MIT)

Description

The object of the course is to teach students an approach to the study of pharmacologic agents. It is not intended to be a review of the pharmacopoeia. The focus is on the basic principles of biophysics, biochemistry and physiology, as related to the mechanisms of drug action, biodistribution and metabolism. The course consists of lectures and student-led case discussions. Topics covered include: mechanisms of drug action, dose-response relations, pharmacokinetics, drug delivery systems, drug metabolism, toxicity of pharmacological agents, drug interaction and substance abuse. Selected agents and classes of agents are examined in detail. Lecturers Prof. Keith Baker Dr. Mark Dershwitz Harold Demonaco Dr. Daniel Kohane Dr. Donald Kufe Prof. Robert Langer Dr. Robert Lees Dr. Robert Rubin The object of the course is to teach students an approach to the study of pharmacologic agents. It is not intended to be a review of the pharmacopoeia. The focus is on the basic principles of biophysics, biochemistry and physiology, as related to the mechanisms of drug action, biodistribution and metabolism. The course consists of lectures and student-led case discussions. Topics covered include: mechanisms of drug action, dose-response relations, pharmacokinetics, drug delivery systems, drug metabolism, toxicity of pharmacological agents, drug interaction and substance abuse. Selected agents and classes of agents are examined in detail. Lecturers Prof. Keith Baker Dr. Mark Dershwitz Harold Demonaco Dr. Daniel Kohane Dr. Donald Kufe Prof. Robert Langer Dr. Robert Lees Dr. Robert Rubin

Subjects

health care | health care | pharmacology | pharmacology | pharmacologic agents | pharmacologic agents | medical | medical | pre-clinical | pre-clinical | biophysics | biophysics | biochemistry | biochemistry | physiology related to drug action | physiology related to drug action | interaction | interaction | distribution | distribution | metabolism | metabolism | toxicity | toxicity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.201 Mechanisms of Drug Actions (MIT) 20.201 Mechanisms of Drug Actions (MIT)

Description

This course covers the chemical and biological analysis of the metabolism and distribution of drugs, toxins and chemicals in animals and humans, and the mechanism by which they cause therapeutic and toxic responses. Metabolism and toxicity as a basis for drug development is also covered. This course covers the chemical and biological analysis of the metabolism and distribution of drugs, toxins and chemicals in animals and humans, and the mechanism by which they cause therapeutic and toxic responses. Metabolism and toxicity as a basis for drug development is also covered.

Subjects

pharmacology | pharmacology | toxicology | toxicology | drug actions | drug actions | therapeutics | therapeutics | histology | histology | pathophysiology | pathophysiology | drug therapy | drug therapy | drug transporters | drug transporters | drug metabolism | drug metabolism | drug toxicity | drug toxicity | drup development | drup development | uptake | uptake | transport | transport

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.151 Principles of Pharmacology (MIT) HST.151 Principles of Pharmacology (MIT)

Description

The objective of this course is to present a conceptual approach to the study of pharmacological agents. Emphasis is on the principles that determine drug actions and disposition. The course is not intended to be a review of the pharmacopeia nor to replace discussions of specific relevant drugs in the organ systems Health Sciences and Technology pathophysiology courses. The objective of this course is to present a conceptual approach to the study of pharmacological agents. Emphasis is on the principles that determine drug actions and disposition. The course is not intended to be a review of the pharmacopeia nor to replace discussions of specific relevant drugs in the organ systems Health Sciences and Technology pathophysiology courses.

Subjects

health care | health care | pharmacology | pharmacology | pharmacologic agents | pharmacologic agents | medical | medical | pre-clinical | pre-clinical | biophysics | biophysics | biochemistry | biochemistry | physiology related to drug action | physiology related to drug action | interaction | interaction | distribution | distribution | metabolism | metabolism | toxicity | toxicity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.S10 Drugs and the Brain (MIT)

Description

This class is a multidisciplinary introduction to pharmacology, neurotransmitters, drug mechanisms, and brain diseases from addiction to schizophrenia. From Abilify® to Zyrtec®, the world is full of fascinating drugs. If you are poisoned by sarin nerve gas, you may be able to save your life by huffing some BZ nerve gas. This class will explain that chemical curiosity, along with a host of other interesting tidbits of pharmacology. The structure of the class interleaves basic concepts with specific examples and entertaining tangents, so it is not loaded with boring abstract theory. In the first class you will learn what a neurotransmitter is, and you will immediately apply that knowledge when we discuss the mechanism of caffeine. The class is highly multidisciplinary, including topi

Subjects

brain | drugs | pharmacology | neurotransmitters | drug mechanisms | brain disease | addiction | schizophrenia

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

OeRBITAL Project (Open educational Resources for Biologists Involved in Teaching And Learning)

Description

OeRBITAL is a discovery project co-ordinated by the UK Centre for Bioscience, working with a number of Discipline Consultants tasked to explore OER repositories to discover the most suitable resources for the attention of their discipline communities. Around 300 Open Educational Resources in areas relating to Bioscience disciplines have been identified by our experts, and evaluated for inclusion in a number of discipline-specific curated collections, as a means of highlighting these key resources for the benefit of the wider Bioscience academic community.

Subjects

ukoer | oer | biochemistry | oerbital | bioscience | biology | biomaths | pharmacology | neuroscience | physiology | cell biology | cancer biology | plant sciences | enzymology | ecology | marine biology | microbiology | molecular genetics | molecular biology | bioinformatics | ethics | Biological sciences | C000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.236 Exploring Pharmacology (MIT)

Description

From Abilify to Zyrtec, the world is full of interesting drugs. Such substances have cured diseases, started wars, and ended careers. This seminar will explain how drugs can elicit a range of medicinal and recreational effects. Planned topics include over-the-counter drugs and "dietary supplements," drugs of abuse, treatments for neurological disorders, psychiatric medications, and many more. Prior experience is neither expected nor required, but student participation is essential.

Subjects

pharmacology | central nervous system | neurotransmitters | dopamine | Parkinson's | ADHD | schizophrenia | serotonin | alcohol | barbituates | LSD | acetylcholine | endocannabinoids | endocrine systems | norepinephrine | opioids

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.52-B Topics in Brain and Cognitive Sciences Human Ethology (MIT)

Description

Survey and special topics designed for students in Brain and Cognitive Sciences. Emphasizes ethological studies of natural behavior patterns and their analysis in laboratory work, with contributions from field biology (mammology, primatology), sociobiology, and comparative psychology. Stresses human behavior but also includes major contributions from studies of other animals.

Subjects

Behavioral modification | ethology | sociobiology | learning | Social Status | Cross-Cultural Differences | Persuasion | Politics | Individual | Sexuality | Dimorphisms in body and behavior | social organization | dominance structures | evolution of sexual signals | emancipation | Mating | reproduction | Emotion | Facial Expression | Displays | General Non-Verbal Communication | Sex Modeling behaviors | Machine interfaces | Cognitive ethology | Comparative cognition | Signs | Symbols | pharmacology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The Liver (metabolism)

Description

radiographers).

Subjects

Anatomy | pharmacology | pharmacokinetics

License

Copyright Oxford Brookes University, all rights reserved Copyright Oxford Brookes University, all rights reserved

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Kinase-linked receptors

Description

This learning resource explains the mechanism and action of kinase-linked receptors. It has been designed to work easily with the Core tool, an application currently under development. The Core tool will enable tutors to collect, organise and aggregate various resources and package them as one learning object.

Subjects

ukoer | pharmacology | Subjects allied to medicine | B000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Action of drugs that target ion channels

Description

This learning resource introduces ion channels as target for drug action.

Subjects

ukoer | pharmacology | Subjects allied to medicine | B000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata