Searching for physiology : 145 results found | RSS Feed for this search

1 2 3 4 5 6

HST.542J Quantitative Physiology: Organ Transport Systems (MIT) HST.542J Quantitative Physiology: Organ Transport Systems (MIT)

Description

This course elaborates on the application of the principles of energy and mass flow to major human organ systems. It discusses mechanisms of regulation and homeostasis. It also discusses anatomical, physiological, and pathophysiological features of the cardiovascular, respiratory, and renal systems. There is emphasis on those systems, features, and devices that are most illuminated by the methods of physical sciences. This course elaborates on the application of the principles of energy and mass flow to major human organ systems. It discusses mechanisms of regulation and homeostasis. It also discusses anatomical, physiological, and pathophysiological features of the cardiovascular, respiratory, and renal systems. There is emphasis on those systems, features, and devices that are most illuminated by the methods of physical sciences.

Subjects

electrocardiogram | electrocardiogram | cardiovascular system | cardiovascular system | cardiovascular physiology | cardiovascular physiology | electrophysiology | electrophysiology | myocardial cells | myocardial cells | electrocardiography | electrocardiography | physiological fluid mechanics | physiological fluid mechanics | respiratory physiology | respiratory physiology | renal physiology | renal physiology | quantitative physiology | quantitative physiology | pulmonary mechanics | pulmonary mechanics | heart | heart | arrhythmia | arrhythmia | pulmonary modeling | pulmonary modeling | clinical electrocardiography | clinical electrocardiography | ECG | ECG | EKG | EKG | ischemia | ischemia | infarction | infarction | vector cardiogram | vector cardiogram | purkinje fibers | purkinje fibers | QRS waveform | QRS waveform | tachycardia | tachycardia | action potential | action potential | depolarization | depolarization | afterdepolarization | afterdepolarization | total lung capacity | total lung capacity | systolic | systolic | diastolic | diastolic | residual volume | residual volume | vital capacity | vital capacity | HST.542 | HST.542 | 2.792 | 2.792 | 20.371J20.371 | 20.371J20.371 | 6.022 | 6.022

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.17 Systems Neuroscience Lab (MIT) 9.17 Systems Neuroscience Lab (MIT)

Description

Systems Neuroscience Laboratory consists of a series of laboratories designed to give students experience with basic techniques for conducting systems neuroscience research. It includes sessions on anatomical, neurophysiological, and data acquisition and analysis techniques, and the ways these techniques are used to study nervous system function. Training is provided in the art of scientific writing with feedback designed to improve writing skills. Assignments include weekly preparation for lab sessions, two major research reports and a series of basic computer programming tutorials (MATLAB®). The class involves the use of experimental animals. Enrollment is limited. Systems Neuroscience Laboratory consists of a series of laboratories designed to give students experience with basic techniques for conducting systems neuroscience research. It includes sessions on anatomical, neurophysiological, and data acquisition and analysis techniques, and the ways these techniques are used to study nervous system function. Training is provided in the art of scientific writing with feedback designed to improve writing skills. Assignments include weekly preparation for lab sessions, two major research reports and a series of basic computer programming tutorials (MATLAB®). The class involves the use of experimental animals. Enrollment is limited.

Subjects

laboratory | laboratory | experiment | experiment | protocol | protocol | neuroscience | neuroscience | nerves | nerves | nervous system | nervous system | electrophysiology | electrophysiology | action potential | action potential | neurophysiology | neurophysiology | rat barrel | rat barrel | MATLAB | MATLAB | frog | frog | fly | fly | vision | vision | physiology | physiology | human | human | MRI | MRI | EEG | EEG | electroencephalography | electroencephalography | ablation | ablation | computer modeling techniques | computer modeling techniques | brain function | brain function | histology | histology | neural tissue | neural tissue | surgery | surgery | laboratory notebook | laboratory notebook | scientific writing | scientific writing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.542J Quantitative Physiology: Organ Transport Systems (MIT)

Description

This course elaborates on the application of the principles of energy and mass flow to major human organ systems. It discusses mechanisms of regulation and homeostasis. It also discusses anatomical, physiological, and pathophysiological features of the cardiovascular, respiratory, and renal systems. There is emphasis on those systems, features, and devices that are most illuminated by the methods of physical sciences.

Subjects

electrocardiogram | cardiovascular system | cardiovascular physiology | electrophysiology | myocardial cells | electrocardiography | physiological fluid mechanics | respiratory physiology | renal physiology | quantitative physiology | pulmonary mechanics | heart | arrhythmia | pulmonary modeling | clinical electrocardiography | ECG | EKG | ischemia | infarction | vector cardiogram | purkinje fibers | QRS waveform | tachycardia | action potential | depolarization | afterdepolarization | total lung capacity | systolic | diastolic | residual volume | vital capacity | HST.542 | 2.792 | 20.371J20.371 | 6.022

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Neuroscience and Behavior (MIT) 9.01 Neuroscience and Behavior (MIT)

Description

Relation of structure and function at various levels of neuronal integration. Topics include: functional neuroanatomy and neurophysiology, sensory and motor systems, centrally programmed behavior, sensory systems, sleep and dreaming, motivation and reward, emotional displays of various types, "higher functions" and the neocortex, and neural processes in learning and memory. In order to improve writing skills in describing experiments and reviewing journal publications in neuroscience, students are required to complete four homework assignments and one literature review with revision. Technical RequirementsMedia player software, such as Quicktime Player, RealOne Player, or Windows Media Player, is required to run the .mp3 files found on this cou Relation of structure and function at various levels of neuronal integration. Topics include: functional neuroanatomy and neurophysiology, sensory and motor systems, centrally programmed behavior, sensory systems, sleep and dreaming, motivation and reward, emotional displays of various types, "higher functions" and the neocortex, and neural processes in learning and memory. In order to improve writing skills in describing experiments and reviewing journal publications in neuroscience, students are required to complete four homework assignments and one literature review with revision. Technical RequirementsMedia player software, such as Quicktime Player, RealOne Player, or Windows Media Player, is required to run the .mp3 files found on this cou

Subjects

functional neuroanatomy | functional neurophysiology | motor systems | centrally programmed behavior | sensory systems | sleep | dreaming | motivation | reward | emotional displays | higher functions" | neocortex | neural processes in learning and memory | functional neuroanatomy | functional neurophysiology | motor systems | centrally programmed behavior | sensory systems | sleep | dreaming | motivation | reward | emotional displays | higher functions" | neocortex | neural processes in learning and memory | functional neuroanatomy | functional neuroanatomy | functional neurophysiology | functional neurophysiology | motor systems | motor systems | centrally programmed behavior | centrally programmed behavior | sensory systems | sensory systems | sleep | sleep | dreaming | dreaming | motivation | motivation | reward | reward | emotional displays | emotional displays | higher functions | higher functions | neocortex | neocortex | neural processes in learning and memory | neural processes in learning and memory | Neurobehavior | Neurobehavior

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.17 Systems Neuroscience Lab (MIT)

Description

Systems Neuroscience Laboratory consists of a series of laboratories designed to give students experience with basic techniques for conducting systems neuroscience research. It includes sessions on anatomical, neurophysiological, and data acquisition and analysis techniques, and the ways these techniques are used to study nervous system function. Training is provided in the art of scientific writing with feedback designed to improve writing skills. Assignments include weekly preparation for lab sessions, two major research reports and a series of basic computer programming tutorials (MATLAB®). The class involves the use of experimental animals. Enrollment is limited.

Subjects

laboratory | experiment | protocol | neuroscience | nerves | nervous system | electrophysiology | action potential | neurophysiology | rat barrel | MATLAB | frog | fly | vision | physiology | human | MRI | EEG | electroencephalography | ablation | computer modeling techniques | brain function | histology | neural tissue | surgery | laboratory notebook | scientific writing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.121 Gastroenterology (MIT) HST.121 Gastroenterology (MIT)

Description

The most recent knowledge of the anatomy, physiology, biochemistry, biophysics, and bioengineering of the gastrointestinal tract and the associated pancreatic, liver and biliary tract systems is presented and discussed. Gross and microscopic pathology and the clinical aspects of important gastroenterological diseases are then presented, with emphasis on integrating the molecular, cellular and pathophysiological aspects of the disease processes to their related symptoms and signs. The most recent knowledge of the anatomy, physiology, biochemistry, biophysics, and bioengineering of the gastrointestinal tract and the associated pancreatic, liver and biliary tract systems is presented and discussed. Gross and microscopic pathology and the clinical aspects of important gastroenterological diseases are then presented, with emphasis on integrating the molecular, cellular and pathophysiological aspects of the disease processes to their related symptoms and signs.

Subjects

gastroenterology | gastroenterology | anatomy | anatomy | physiology | physiology | biochemistry | biochemistry | biophysics | biophysics | bioengineering | bioengineering | gastrointestinal tract | gastrointestinal tract | pancreas | pancreas | liver | liver | biliary tract system | biliary tract system | gross pathology | gross pathology | microscopic pathology | microscopic pathology | clinical diseases | clinical diseases | molecular | molecular | cellular | cellular | pathophysiological processes | pathophysiological processes | symptoms | symptoms | medical | medical | health | health

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Sophisticated Survival Skills of Simple Microorganisms (MIT) 7.343 Sophisticated Survival Skills of Simple Microorganisms (MIT)

Description

In this course, we will discuss the microbial physiology and genetics of stress responses in aquatic ecosystems, astrobiology, bacterial pathogenesis and other environments. We will learn about classical and novel methods utilized by researchers to uncover bacterial mechanisms induced under both general and environment-specific stresses. Finally, we will compare and contrast models for bacterial stress responses to gain an understanding of distinct mechanisms of survival and of why there are differences among bacterial genera. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly In this course, we will discuss the microbial physiology and genetics of stress responses in aquatic ecosystems, astrobiology, bacterial pathogenesis and other environments. We will learn about classical and novel methods utilized by researchers to uncover bacterial mechanisms induced under both general and environment-specific stresses. Finally, we will compare and contrast models for bacterial stress responses to gain an understanding of distinct mechanisms of survival and of why there are differences among bacterial genera. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly

Subjects

microbial physiology | microbial physiology | genetics | genetics | stress | stress | astrobiology | astrobiology | pathogenesis | pathogenesis | Escherichia coli | Escherichia coli | cyanobacteria | cyanobacteria | bleaching | bleaching | deprivation | deprivation | chlorosis | chlorosis | pollutants | pollutants | methylobacteria | methylobacteria | pathogen | pathogen | reactive oxygen species | reactive oxygen species | infection | infection | superoxides | superoxides | phage | phage | Deinococcus | Deinococcus | Raman spectroscopy | Raman spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Spiders, yes, but why cats?

Description

Prof.Iain McGilchrist illustrates his argument by appeal to a number of paintings done by psychotic patients. He points to various commonalities between these paintings and speculates on the ways in which they support claims about the two hemispheres and Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

philosophy | mind | hemisphere | Tallis | McGilchrist | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | psychosis | art | spiders | cats | left-hemisphere | right-hemisphere | philosophy | mind | hemisphere | Tallis | McGilchrist | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | psychosis | art | spiders | cats | left-hemisphere | right-hemisphere

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129015/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Was Schubert a musical brain?

Description

Prof. Raymond Tallis deepens his argument against the idea that we are our brains. He believes there is a distinction in kind between humans and other animals. This he illustrates by appeal to the differences between the music of Schubert and the singing Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

philosophy | mind | Tallis | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | music | birdsong | philosophy | mind | Tallis | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | music | birdsong

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129015/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Am I my mind?

Description

Prof. Iain McGilchrist, whilst agreeing with Tallis that we are not our brains argues that we can learn a great deal about our culture by learning more about our brain. In particular we should recognise we have two hemispheres, each with a different funct Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

philosophy | mind | hemisphere | Tallis | McGilchrist | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | philosophy | mind | hemisphere | Tallis | McGilchrist | brain | neurophysiology | personhood | culture | neuromania | mind-body problem

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129015/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Am I my brain?

Description

Prof. Raymond Tallis argues that extraordinary claims have been made for neurophysiology. For example it has been said that a person is nothing but his or her brain. Professor Raymond Tallis rejects this ?neuromania?. He shows why it is attractive, but al Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

philosophy | mind | Tallis | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | philosophy | mind | Tallis | brain | neurophysiology | personhood | culture | neuromania | mind-body problem

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129015/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Spiders, yes, but why cats?

Description

Prof.Iain McGilchrist illustrates his argument by appeal to a number of paintings done by psychotic patients. He points to various commonalities between these paintings and speculates on the ways in which they support claims about the two hemispheres and Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

philosophy | mind | hemisphere | Tallis | McGilchrist | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | psychosis | art | spiders | cats | left-hemisphere | right-hemisphere | philosophy | mind | hemisphere | Tallis | McGilchrist | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | psychosis | art | spiders | cats | left-hemisphere | right-hemisphere

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129015/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Was Schubert a musical brain?

Description

Prof. Raymond Tallis deepens his argument against the idea that we are our brains. He believes there is a distinction in kind between humans and other animals. This he illustrates by appeal to the differences between the music of Schubert and the singing Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

philosophy | mind | Tallis | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | music | birdsong | philosophy | mind | Tallis | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | music | birdsong

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129015/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Am I my mind?

Description

Prof. Iain McGilchrist, whilst agreeing with Tallis that we are not our brains argues that we can learn a great deal about our culture by learning more about our brain. In particular we should recognise we have two hemispheres, each with a different funct Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

philosophy | mind | hemisphere | Tallis | McGilchrist | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | philosophy | mind | hemisphere | Tallis | McGilchrist | brain | neurophysiology | personhood | culture | neuromania | mind-body problem

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129015/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Am I my brain?

Description

Prof. Raymond Tallis argues that extraordinary claims have been made for neurophysiology. For example it has been said that a person is nothing but his or her brain. Professor Raymond Tallis rejects this ?neuromania?. He shows why it is attractive, but al Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

philosophy | mind | Tallis | brain | neurophysiology | personhood | culture | neuromania | mind-body problem | philosophy | mind | Tallis | brain | neurophysiology | personhood | culture | neuromania | mind-body problem

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129015/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A deep breath in

Description

Asthma and COPD (chronic obstructive pulmonary disease) are common conditions that affect the lives of many people. Dr Mona Bafadhel studies the pathophysiology of COPD (chronic obstructive pulmonary disease). There are broadly two inflammatory phenotypes of COPD that are clinically indistinguishable but have different treatment responses. Dr Bafadhel is working on the development of novel therapeutic strategies for COPD, particularly to treat the regular periods of worsened symptoms that patients experience. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

asthma | copd | pathophysiology | treatment | therapeutic strategies | asthma | copd | pathophysiology | treatment | therapeutic strategies

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A deep breath in

Description

Asthma and COPD (chronic obstructive pulmonary disease) are common conditions that affect the lives of many people. Dr Mona Bafadhel studies the pathophysiology of COPD (chronic obstructive pulmonary disease). There are broadly two inflammatory phenotypes of COPD that are clinically indistinguishable but have different treatment responses. Dr Bafadhel is working on the development of novel therapeutic strategies for COPD, particularly to treat the regular periods of worsened symptoms that patients experience. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

asthma | copd | pathophysiology | treatment | therapeutic strategies | asthma | copd | pathophysiology | treatment | therapeutic strategies

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.010 Chemistry of Sports (MIT) ES.010 Chemistry of Sports (MIT)

Description

Includes audio/video content: AV special element video. The seminar is designed to look at the science of triathlons and sports from a molecular/chemical biological point of view. We will be able to use our own bodies to see how exercise affects the system, through observations written in a training journal. We will also improve the overall fitness of the class through maintaining a physical fitness program over the course of the term. The end of the term will have us all participate in a mini-triathlon. Includes audio/video content: AV special element video. The seminar is designed to look at the science of triathlons and sports from a molecular/chemical biological point of view. We will be able to use our own bodies to see how exercise affects the system, through observations written in a training journal. We will also improve the overall fitness of the class through maintaining a physical fitness program over the course of the term. The end of the term will have us all participate in a mini-triathlon.

Subjects

chemistry | chemistry | sports | sports | triathlon | triathlon | anatomy and physiology | anatomy and physiology | nutrition | nutrition | bicycle | bicycle | swimming | swimming | running | running | exercise | exercise

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

24.119 Mind and Machines (MIT) 24.119 Mind and Machines (MIT)

Description

This course is an introduction to many of the central issues in a branch of philosophy called philosophy of mind. Some of the questions we will discuss include the following. Can computers think? Is the mind an immaterial thing? Or is the mind the brain? Or does the mind stand to the brain as a computer program stands to the hardware? How can creatures like ourselves think thoughts that are "about" things? (For example, we can all think that Aristotle is a philosopher, and in that sense think "about" Aristotle, but what is the explanation of this quite remarkable ability?) Can I know whether your experiences and my experiences when we look at raspberries, fire trucks and stop lights are the same? Can consciousness be given a scientific explanation? This course is an introduction to many of the central issues in a branch of philosophy called philosophy of mind. Some of the questions we will discuss include the following. Can computers think? Is the mind an immaterial thing? Or is the mind the brain? Or does the mind stand to the brain as a computer program stands to the hardware? How can creatures like ourselves think thoughts that are "about" things? (For example, we can all think that Aristotle is a philosopher, and in that sense think "about" Aristotle, but what is the explanation of this quite remarkable ability?) Can I know whether your experiences and my experiences when we look at raspberries, fire trucks and stop lights are the same? Can consciousness be given a scientific explanation?

Subjects

artificial intelligence | artificial intelligence | psychology | psychology | philosophy | philosophy | Turing Machines | Turing Machines | consciousness | consciousness | computer limitations | computer limitations | computation | computation | neurophysiology | neurophysiology | Turing test | Turing test | the analog/digital distinction | the analog/digital distinction | Chinese Room argument | Chinese Room argument | causal efficacy of content | causal efficacy of content | inverted spectrum | inverted spectrum | mental representation | mental representation | procedural semantics | procedural semantics | connectionism | connectionism

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.201 Mechanisms of Drug Actions (MIT) 20.201 Mechanisms of Drug Actions (MIT)

Description

This course addresses the scientific basis for the development of new drugs. The first half of the semester begins with an overview of the drug discovery process, followed by fundamental principles of pharmacokinetics, pharmacodynamics, metabolism, and the mechanisms by which drugs cause therapeutic and toxic responses. The second half of the semester applies those principles to case studies and literature discussions of current problems with specific drugs, drug classes, and therapeutic targets. This course addresses the scientific basis for the development of new drugs. The first half of the semester begins with an overview of the drug discovery process, followed by fundamental principles of pharmacokinetics, pharmacodynamics, metabolism, and the mechanisms by which drugs cause therapeutic and toxic responses. The second half of the semester applies those principles to case studies and literature discussions of current problems with specific drugs, drug classes, and therapeutic targets.

Subjects

drugs | drugs | medicine | medicine | pharmaceutical | pharmaceutical | pharmacology | pharmacology | toxicology | toxicology | drug actions | drug actions | therapeutics | therapeutics | histology | histology | pathophysiology | pathophysiology | drug therapy | drug therapy | drug transporters | drug transporters | drug metabolism | drug metabolism | drug toxicity | drug toxicity | drug development | drug development | uptake | uptake | transport | transport | case study | case study | biochemistry | biochemistry | Pharmacokinetics | Pharmacokinetics | Pharmacogenetics | Pharmacogenetics | Omeprazole | Omeprazole | antibiotics | antibiotics | Oncology | Oncology | Statins | Statins | Sarilumab | Sarilumab | cystic fibrosis | cystic fibrosis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Neuroscience and Behavior (MIT) 9.01 Neuroscience and Behavior (MIT)

Description

Includes audio/video content: AV lectures. This course covers the relation of structure and function at various levels of neuronal integration. Topics include functional neuroanatomy and neurophysiology, sensory and motor systems, centrally programmed behavior, sensory systems, sleep and dreaming, motivation and reward, emotional displays of various types, "higher functions" and the neocortex, and neural processes in learning and memory. Includes audio/video content: AV lectures. This course covers the relation of structure and function at various levels of neuronal integration. Topics include functional neuroanatomy and neurophysiology, sensory and motor systems, centrally programmed behavior, sensory systems, sleep and dreaming, motivation and reward, emotional displays of various types, "higher functions" and the neocortex, and neural processes in learning and memory.

Subjects

functional neuroanatomy | functional neuroanatomy | functional neurophysiology | functional neurophysiology | motor systems | motor systems | centrally programmed behavior | centrally programmed behavior | sensory systems | sensory systems | sleep | sleep | dreaming | dreaming | motivation | motivation | reward | reward | emotional displays | emotional displays | higher functions | higher functions | neocortex | neocortex | neural processes in learning and memory | neural processes in learning and memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.03 Neural Basis of Learning and Memory (MIT) 9.03 Neural Basis of Learning and Memory (MIT)

Description

Topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. Emphasis on human and animal models of hippocampal mechanisms and function. Lectures and discussion of papers. An additional project is required for graduate credit. This course is offered alternate years. Topics in mammalian learning and memory including cellular mechanisms of neural plasticity, electrophysiology, and behavior. Emphasis on human and animal models of hippocampal mechanisms and function. Lectures and discussion of papers. An additional project is required for graduate credit. This course is offered alternate years.

Subjects

learning | learning | memory | memory | neural plasticity | neural plasticity | electrophysiology | electrophysiology | hippocampus | hippocampus

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.785J Cell-Matrix Mechanics (MIT) 2.785J Cell-Matrix Mechanics (MIT)

Description

Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine. Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine.

Subjects

2.785 | 2.785 | 3.97 | 3.97 | 20.411 | 20.411 | HST.523 | HST.523 | cell | cell | matrix | matrix | mechanics | mechanics | tissue | tissue | organ | organ | development | development | injury | injury | stress field | stress field | cell function | cell function | deformed cells | deformed cells | biosynthetic activity | biosynthetic activity | unit cell | unit cell | connective tissue | connective tissue | cell biology | cell biology | physiology | physiology | medicine | medicine | cytoplasm | cytoplasm | extracellular matrix | extracellular matrix | skeleton | skeleton | bone | bone

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.914 Special Topics: Genetics, Neurobiology, and Pathophysiology of Psychiatric Disorders (MIT) 9.914 Special Topics: Genetics, Neurobiology, and Pathophysiology of Psychiatric Disorders (MIT)

Description

An opportunity for graduate study of advanced subjects in Brain and Cognitive Sciences not included in other subject listings. The key topics covered in this course are Bipolar Disorder, Psychosis, Schizophrenia, Genetics of Psychiatric Disorder, DISC1, Ca++ Signaling, Neurogenesis and Depression, Lithium and GSK3 Hypothesis, Behavioral Assays, CREB in Addiction and Depressive Behaviors, The GABA System-I, The GABA System-II, The Glutamate Hypothesis of Schizophrenia, The Dopamine Pathway and DARPP32. An opportunity for graduate study of advanced subjects in Brain and Cognitive Sciences not included in other subject listings. The key topics covered in this course are Bipolar Disorder, Psychosis, Schizophrenia, Genetics of Psychiatric Disorder, DISC1, Ca++ Signaling, Neurogenesis and Depression, Lithium and GSK3 Hypothesis, Behavioral Assays, CREB in Addiction and Depressive Behaviors, The GABA System-I, The GABA System-II, The Glutamate Hypothesis of Schizophrenia, The Dopamine Pathway and DARPP32.

Subjects

Brain and Cognitive Sciences | Brain and Cognitive Sciences | Bipolar Disorder | Bipolar Disorder | Psychosis | Psychosis | Schizophrenia | Schizophrenia | Genetics of Psychiatric Disorder | Genetics of Psychiatric Disorder | DISC1 | DISC1 | Ca++ Signaling | Ca++ Signaling | Depression | Depression | Lithium and GSK3 Hypothesis | Lithium and GSK3 Hypothesis | Behavioral Assays | Behavioral Assays | Depressive Behaviors | Depressive Behaviors | The GABA System-I | The GABA System-I | The GABA System-II | The GABA System-II | The Glutamate Hypothesis of Schizophrenia | The Glutamate Hypothesis of Schizophrenia | DARPP32 | DARPP32 | Genetics | Genetics | Neurobiology | Neurobiology | Pathophysiology | Pathophysiology | Psychiatry | Psychiatry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.01 Introduction to Neuroscience (MIT) 9.01 Introduction to Neuroscience (MIT)

Description

This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain. This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain.

Subjects

neuroscience | neuroscience | vision | vision | hearing | hearing | neuroanatomy | neuroanatomy | color vision | color vision | blind spot | blind spot | retinal phototransduction | retinal phototransduction | cortical maps | cortical maps | primary visual cortex | primary visual cortex | complex cells | complex cells | extrastriate cortex | extrastriate cortex | ear | ear | cochlea | cochlea | basilar membrane | basilar membrane | auditory transduction | auditory transduction | hair cells | hair cells | phase-locking | phase-locking | sound localization | sound localization | auditory cortex | auditory cortex | somatosensory system | somatosensory system | motor system | motor system | synaptic transmission | synaptic transmission | action potential | action potential | sympathetic neurons | sympathetic neurons | parasympathetic neurons | parasympathetic neurons | cellual neurophysiology | cellual neurophysiology | learning | learning | memory | memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata