Searching for pluripotency : 9 results found | RSS Feed for this search

7.349 Stem Cells: A Cure or Disease? (MIT) 7.349 Stem Cells: A Cure or Disease? (MIT)

Description

Have you ever considered going to a pharmacy to order some new cardiomyocytes (heart muscle cells) for your ailing heart? It might sound crazy, but recent developments in stem cell science have made this concept not so futuristic. In this course, we will explore the underlying biology behind the idea of using stem cells to treat disease, specifically analyzing the mechanisms that enable a single genome to encode multiple cell states ranging from neurons to fibroblasts to T cells. Overall, we hope to provide a comprehensive overview of this exciting new field of research and its clinical relevance. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literat Have you ever considered going to a pharmacy to order some new cardiomyocytes (heart muscle cells) for your ailing heart? It might sound crazy, but recent developments in stem cell science have made this concept not so futuristic. In this course, we will explore the underlying biology behind the idea of using stem cells to treat disease, specifically analyzing the mechanisms that enable a single genome to encode multiple cell states ranging from neurons to fibroblasts to T cells. Overall, we hope to provide a comprehensive overview of this exciting new field of research and its clinical relevance. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literat

Subjects

stem cells | stem cells | stem cell therapy | stem cell therapy | cellular reprogramming | cellular reprogramming | transdifferentiation | transdifferentiation | pluripotency | pluripotency | epigenetics | epigenetics | genome-wide sequencing | genome-wide sequencing | transcription-mediated reprogramming | transcription-mediated reprogramming | embryonic stem cell technology | embryonic stem cell technology | transcription factors | transcription factors | chromatin structure | chromatin structure | H3K4me3 | H3K4me3 | H3K27me3 | H3K27me3 | histone deacetylase 1 | histone deacetylase 1 | RNAi screens | RNAi screens | Oct4 | Oct4 | cloning | cloning | Dolly | Dolly | in vitro differentiation | in vitro differentiation | regenerative medicine | regenerative medicine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Reading the Blueprint of Life: Transcription, Stem Cells and Differentiation (MIT) 7.342 Reading the Blueprint of Life: Transcription, Stem Cells and Differentiation (MIT)

Description

In this course, we will address how transcriptional regulators both prohibit and drive differentiation during the course of development. How does a stem cell know when to remain a stem cell and when to become a specific cell type? Are there global differences in the way the genome is read in multipotent and terminally differentiated cells? We will explore how stem cell pluripotency is preserved, how master regulators of cell-fate decisions execute developmental programs, and how chromatin regulators control undifferentiated versus differentiated states. Additionally, we will discuss how aberrant regulation of transcriptional regulators produces disorders such as developmental defects and cancer.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at In this course, we will address how transcriptional regulators both prohibit and drive differentiation during the course of development. How does a stem cell know when to remain a stem cell and when to become a specific cell type? Are there global differences in the way the genome is read in multipotent and terminally differentiated cells? We will explore how stem cell pluripotency is preserved, how master regulators of cell-fate decisions execute developmental programs, and how chromatin regulators control undifferentiated versus differentiated states. Additionally, we will discuss how aberrant regulation of transcriptional regulators produces disorders such as developmental defects and cancer.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at

Subjects

blueprint of life | blueprint of life | transcription | transcription | stem cells | stem cells | differentiation | differentiation | human tissues | human tissues | tissue regeneration | tissue regeneration | human disease | human disease | RNA and protein expression patterns | RNA and protein expression patterns | transcriptional regulation | transcriptional regulation | specialized gene expression programs | specialized gene expression programs | genome | genome | multipotent | multipotent | terminally differentiated | terminally differentiated | pluripotency | pluripotency | master regulators | master regulators | chromatin regulators | chromatin regulators | developmental defects | developmental defects | cancer | cancer

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.347 Epigenetic Regulation of Stem Cells (MIT) 7.347 Epigenetic Regulation of Stem Cells (MIT)

Description

During development a single totipotent cell gives rise to the vast array of cell types present in the adult human body, yet each cell has essentially the same DNA sequence. As cells differentiate, distinct sets of genes must be coordinately activated and repressed, ultimately leading to a cell-type specific pattern of gene expression and a particular cell fate. In eukaryotic organisms, DNA is packaged in a complex protein super structure known as chromatin. Modification and reorganization of chromatin play a critical role in coordinating the cell-type specific gene expression programs that are required as a cell transitions from a pluripotent stem cell to a fully differentiated cell type. Epigenetics refers to such heritable changes that occur in chromatin without altering the primary DNA During development a single totipotent cell gives rise to the vast array of cell types present in the adult human body, yet each cell has essentially the same DNA sequence. As cells differentiate, distinct sets of genes must be coordinately activated and repressed, ultimately leading to a cell-type specific pattern of gene expression and a particular cell fate. In eukaryotic organisms, DNA is packaged in a complex protein super structure known as chromatin. Modification and reorganization of chromatin play a critical role in coordinating the cell-type specific gene expression programs that are required as a cell transitions from a pluripotent stem cell to a fully differentiated cell type. Epigenetics refers to such heritable changes that occur in chromatin without altering the primary DNA

Subjects

Stem cells | Stem cells | induced pluripotency | induced pluripotency | Epigenetics | Epigenetics | chromatin | chromatin | histone | histone | epigenome | epigenome | genome-wide analyses | genome-wide analyses | high-throughput sequencing technologies | high-throughput sequencing technologies | Chromatin Immunoprecipitation sequencing | Chromatin Immunoprecipitation sequencing | ncRNAs | ncRNAs | epigenetic regulation | epigenetic regulation | DNA methylation | DNA methylation | post-translational modification of histones | post-translational modification of histones | roles of chromatin-assembly modifying complexes | roles of chromatin-assembly modifying complexes | non-coding RNAs | non-coding RNAs | nuclear organization | nuclear organization | developmental fate | developmental fate | stem cell therapy | stem cell therapy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Pluripotent Stem Cells and Genome Engineering for Modeling Human Diseases (MIT) 7.342 Pluripotent Stem Cells and Genome Engineering for Modeling Human Diseases (MIT)

Description

One of the major priorities in biomedical research is understanding the molecular events that establish the complex processes involved in human development and the relationships of these processes to human disease and disease progression. In this class, we will explore stem cell biology and the way in which it has developed and shaped our ability to study complex human disease. We will introduce the field of stem cell biology and genome engineering through critical reading of both the classical and newest primary research literature. In addition, this course will discuss specific disease model systems and their benefits / limitations for understanding the disease and treating human patients. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT One of the major priorities in biomedical research is understanding the molecular events that establish the complex processes involved in human development and the relationships of these processes to human disease and disease progression. In this class, we will explore stem cell biology and the way in which it has developed and shaped our ability to study complex human disease. We will introduce the field of stem cell biology and genome engineering through critical reading of both the classical and newest primary research literature. In addition, this course will discuss specific disease model systems and their benefits / limitations for understanding the disease and treating human patients. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT

Subjects

stem cells | stem cells | genome engineering | genome engineering | pluripotency | pluripotency | disease progression | disease progression | embryonic stem cells | embryonic stem cells | induced pluripotent stem cells | induced pluripotent stem cells | transgenic animals | transgenic animals | regenerative medicine | regenerative medicine | CRISPR/cas9 | CRISPR/cas9 | Nuclear Transfer | Nuclear Transfer | Cellular Reprogramming | Cellular Reprogramming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Reading the Blueprint of Life: Transcription, Stem Cells and Differentiation (MIT)

Description

In this course, we will address how transcriptional regulators both prohibit and drive differentiation during the course of development. How does a stem cell know when to remain a stem cell and when to become a specific cell type? Are there global differences in the way the genome is read in multipotent and terminally differentiated cells? We will explore how stem cell pluripotency is preserved, how master regulators of cell-fate decisions execute developmental programs, and how chromatin regulators control undifferentiated versus differentiated states. Additionally, we will discuss how aberrant regulation of transcriptional regulators produces disorders such as developmental defects and cancer.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at

Subjects

blueprint of life | transcription | stem cells | differentiation | human tissues | tissue regeneration | human disease | RNA and protein expression patterns | transcriptional regulation | specialized gene expression programs | genome | multipotent | terminally differentiated | pluripotency | master regulators | chromatin regulators | developmental defects | cancer

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Pluripotent Stem Cells and Genome Engineering for Modeling Human Diseases (MIT)

Description

One of the major priorities in biomedical research is understanding the molecular events that establish the complex processes involved in human development and the relationships of these processes to human disease and disease progression. In this class, we will explore stem cell biology and the way in which it has developed and shaped our ability to study complex human disease. We will introduce the field of stem cell biology and genome engineering through critical reading of both the classical and newest primary research literature. In addition, this course will discuss specific disease model systems and their benefits / limitations for understanding the disease and treating human patients. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT

Subjects

stem cells | genome engineering | pluripotency | disease progression | embryonic stem cells | induced pluripotent stem cells | transgenic animals | regenerative medicine | CRISPR/cas9 | Nuclear Transfer | Cellular Reprogramming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.347 Epigenetic Regulation of Stem Cells (MIT)

Description

During development a single totipotent cell gives rise to the vast array of cell types present in the adult human body, yet each cell has essentially the same DNA sequence. As cells differentiate, distinct sets of genes must be coordinately activated and repressed, ultimately leading to a cell-type specific pattern of gene expression and a particular cell fate. In eukaryotic organisms, DNA is packaged in a complex protein super structure known as chromatin. Modification and reorganization of chromatin play a critical role in coordinating the cell-type specific gene expression programs that are required as a cell transitions from a pluripotent stem cell to a fully differentiated cell type. Epigenetics refers to such heritable changes that occur in chromatin without altering the primary DNA

Subjects

Stem cells | induced pluripotency | Epigenetics | chromatin | histone | epigenome | genome-wide analyses | high-throughput sequencing technologies | Chromatin Immunoprecipitation sequencing | ncRNAs | epigenetic regulation | DNA methylation | post-translational modification of histones | roles of chromatin-assembly modifying complexes | non-coding RNAs | nuclear organization | developmental fate | stem cell therapy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.349 Stem Cells: A Cure or Disease? (MIT)

Description

Have you ever considered going to a pharmacy to order some new cardiomyocytes (heart muscle cells) for your ailing heart? It might sound crazy, but recent developments in stem cell science have made this concept not so futuristic. In this course, we will explore the underlying biology behind the idea of using stem cells to treat disease, specifically analyzing the mechanisms that enable a single genome to encode multiple cell states ranging from neurons to fibroblasts to T cells. Overall, we hope to provide a comprehensive overview of this exciting new field of research and its clinical relevance. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literat

Subjects

stem cells | stem cell therapy | cellular reprogramming | transdifferentiation | pluripotency | epigenetics | genome-wide sequencing | transcription-mediated reprogramming | embryonic stem cell technology | transcription factors | chromatin structure | H3K4me3 | H3K27me3 | histone deacetylase 1 | RNAi screens | Oct4 | cloning | Dolly | in vitro differentiation | regenerative medicine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Reading the Blueprint of Life: Transcription, Stem Cells and Differentiation (MIT)

Description

In this course, we will address how transcriptional regulators both prohibit and drive differentiation during the course of development. How does a stem cell know when to remain a stem cell and when to become a specific cell type? Are there global differences in the way the genome is read in multipotent and terminally differentiated cells? We will explore how stem cell pluripotency is preserved, how master regulators of cell-fate decisions execute developmental programs, and how chromatin regulators control undifferentiated versus differentiated states. Additionally, we will discuss how aberrant regulation of transcriptional regulators produces disorders such as developmental defects and cancer.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at

Subjects

blueprint of life | transcription | stem cells | differentiation | human tissues | tissue regeneration | human disease | RNA and protein expression patterns | transcriptional regulation | specialized gene expression programs | genome | multipotent | terminally differentiated | pluripotency | master regulators | chromatin regulators | developmental defects | cancer

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata