Searching for pot : 875 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

2.20 Marine Hydrodynamics (13.021) (MIT) 2.20 Marine Hydrodynamics (13.021) (MIT)

Description

In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory, viscous-fluid flow, laminar and turbulent boundary layers, model testing, scaling laws, application of potential theory to surface waves, energy transport, wave/body forces, linearized theory of lifting surfaces, and experimental project in the towing tank or propeller tunnel.This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.021. In 2005, In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory, viscous-fluid flow, laminar and turbulent boundary layers, model testing, scaling laws, application of potential theory to surface waves, energy transport, wave/body forces, linearized theory of lifting surfaces, and experimental project in the towing tank or propeller tunnel.This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.021. In 2005,Subjects

fundamentals of fluid mechanics | fundamentals of fluid mechanics | naval architecture | naval architecture | ocean science and engineering | ocean science and engineering | transport theorem | transport theorem | conservation principles | conservation principles | Navier-Stokes' equation | Navier-Stokes' equation | dimensional analysis | dimensional analysis | ideal and potential flows | ideal and potential flows | vorticity and Kelvin's theorem | vorticity and Kelvin's theorem | hydrodynamic forces in potential flow | hydrodynamic forces in potential flow | D'Alembert's paradox | D'Alembert's paradox | added-mass | added-mass | slender-body theory. Viscous-fluid flow | slender-body theory. Viscous-fluid flow | laminar and turbulent boundary layers | laminar and turbulent boundary layers | model testing | model testing | scaling laws | scaling laws | application of potential theory to surface waves | application of potential theory to surface waves | energy transport | energy transport | wave/body forces | wave/body forces | linearized theory of lifting surfaces | linearized theory of lifting surfaces | experimental project in the towing tank or propeller tunnel | experimental project in the towing tank or propeller tunnelLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

In this subject, we consider two basic topics in cellular biophysics, posed here as questions: Which molecules are transported across cellular membranes, and what are the mechanisms of transport? How do cells maintain their compositions, volume, and membrane potential? How are potentials generated across the membranes of cells? What do these potentials do? Although the questions posed are fundamentally biological questions, the methods for answering these questions are inherently multidisciplinary. As we will see throughout the course, the role of mathematical models is to express concepts precisely enough that precise conclusions can be drawn. In connection with all the topics covered, we will consider both theory and experiment. For the student, the educational value of examining the i In this subject, we consider two basic topics in cellular biophysics, posed here as questions: Which molecules are transported across cellular membranes, and what are the mechanisms of transport? How do cells maintain their compositions, volume, and membrane potential? How are potentials generated across the membranes of cells? What do these potentials do? Although the questions posed are fundamentally biological questions, the methods for answering these questions are inherently multidisciplinary. As we will see throughout the course, the role of mathematical models is to express concepts precisely enough that precise conclusions can be drawn. In connection with all the topics covered, we will consider both theory and experiment. For the student, the educational value of examining the iSubjects

quantitative physiology | quantitative physiology | cells | cells | tissues | tissues | mass transport | mass transport | electrical signal generation | electrical signal generation | biological membranes | biological membranes | membranes | membranes | diffusion | diffusion | osmosis | osmosis | chemically mediated transport | chemically mediated transport | active transport | active transport | ion transport | ion transport | equilibrium potential | equilibrium potential | resting potential | resting potential | action potential | action potential | voltage-gated ion channels | voltage-gated ion channels | 6.021 | 6.021 | 2.791 | 2.791 | 2.794 | 2.794 | 6.521 | 6.521 | 20.370 | 20.370 | 20.470 | 20.470 | HST.541 | HST.541License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.05 Quantum Physics II (MIT) 8.05 Quantum Physics II (MIT)

Description

Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum. Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum.Subjects

General formalism of quantum mechanics: states | General formalism of quantum mechanics: states | operators | operators | Dirac notation | Dirac notation | representations | representations | measurement theory | measurement theory | Harmonic oscillator: operator algebra | Harmonic oscillator: operator algebra | states | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | bound and scattering states | qualitative analysis of wavefunctions | qualitative analysis of wavefunctions | Angular momentum: operators | Angular momentum: operators | commutator algebra | commutator algebra | eigenvalues and eigenstates | eigenvalues and eigenstates | spherical harmonics | spherical harmonics | Spin: Stern-Gerlach devices and measurements | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | nuclear magnetic resonance | spin and statistics | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | spin systems | allotropic forms of hydrogen | allotropic forms of hydrogen | Angular momentum | Angular momentum | Harmonic oscillator | Harmonic oscillator | operator algebra | operator algebra | Spin | Spin | Stern-Gerlach devices and measurements | Stern-Gerlach devices and measurements | central potentials and the radial equation | central potentials and the radial equation | Clebsch-Gordan series and coefficients | Clebsch-Gordan series and coefficients | quantum physics | quantum physics | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | 8. Quantum mechanics in three-dimensions: central potentials and the radial equation | and allotropic forms of hydrogen | and allotropic forms of hydrogenLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.57 Nano-to-Macro Transport Processes (MIT) 2.57 Nano-to-Macro Transport Processes (MIT)

Description

This course provides parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology. This course provides parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.Subjects

nanotechnology | nanotechnology | nanoscale | nanoscale | transport phenomena | transport phenomena | photons | photons | electrons | electrons | phonons | phonons | energy carriers | energy carriers | energy transport | energy transport | heat transport | heat transport | energy levels | energy levels | statistical behavior | statistical behavior | internal energy | internal energy | waves and particles | waves and particles | scattering | scattering | heat generation | heat generation | Boltzmann equation | Boltzmann equation | classical laws | classical laws | microtechnology | microtechnology | crystal | crystal | lattice | lattice | quantum oscillator | quantum oscillator | laudaurer | laudaurer | nanotube | nanotube | Louiville equation | Louiville equation | X-ray | X-ray | blackbody | blackbody | quantum well | quantum well | Fourier | Fourier | Newton | Newton | Ohm | Ohm | thermoelectric effect | thermoelectric effect | Brownian motion | Brownian motion | surface tension | surface tension | van der Waals potential. | van der Waals potential. | van der Waals potential | van der Waals potentialLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.804 Large-scale Flow Dynamics Lab (MIT) 12.804 Large-scale Flow Dynamics Lab (MIT)

Description

12.804 is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices. 12.804 is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices.Subjects

flow dynamics laboratory | flow dynamics laboratory | oceanic | oceanic | atmospheric | atmospheric | quasi-balanced flows | quasi-balanced flows | computational models | computational models | rotating tank experiments | rotating tank experiments | potential vorticity conservation | potential vorticity conservation | potential vorticity inversion | potential vorticity inversion | Rossby waves | Rossby waves | Rossby wave propagation | Rossby wave propagation | baroclinic instability | baroclinic instability | vortices | vorticesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.01 Introduction to Neuroscience (MIT) 9.01 Introduction to Neuroscience (MIT)

Description

This course begins with the study of nerve cells which includes their structure, the propagation of nerve impulses and transfer of information between nerve cells, the effect of drugs on this process, and the development of nerve cells into the brain and spinal cord. Next, sensory systems such as hearing, vision and touch are covered as well as a discussion on how physical energy such as light is converted into neural signals, where these signals travel in the brain and how they are processed. Other topics include the control of voluntary movement, the neurochemical bases of brain diseases, and those systems which control sleep and consciousness, learning and memory. This course begins with the study of nerve cells which includes their structure, the propagation of nerve impulses and transfer of information between nerve cells, the effect of drugs on this process, and the development of nerve cells into the brain and spinal cord. Next, sensory systems such as hearing, vision and touch are covered as well as a discussion on how physical energy such as light is converted into neural signals, where these signals travel in the brain and how they are processed. Other topics include the control of voluntary movement, the neurochemical bases of brain diseases, and those systems which control sleep and consciousness, learning and memory.Subjects

neuroscience | neuroscience | vision | vision | hearing | hearing | neuroanatomy | neuroanatomy | color vision | color vision | blind spot | blind spot | retinal phototransduction | retinal phototransduction | center-surround receptive fields | center-surround receptive fields | corticalmaps | corticalmaps | primary visual cortex | primary visual cortex | simple cells | simple cells | complex cells | complex cells | extrastriate cortex | extrastriate cortex | ear | ear | cochlea | cochlea | basilar membrane | basilar membrane | auditory transduction | auditory transduction | hair cells | hair cells | phase-locking | phase-locking | tonotopy | tonotopy | sound localization | sound localization | auditory cortex | auditory cortex | somatosensory system | somatosensory system | motor system | motor system | synaptic transmission | synaptic transmission | action potential | action potential | sympathetic neurons | sympathetic neurons | parasympathetic neurons | parasympathetic neurons | cellual neurophysiology | cellual neurophysiology | learning | learning | memory | memoryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.05 Quantum Physics II (MIT) 8.05 Quantum Physics II (MIT)

Description

This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogen This course, along with the next course in this sequence (8.06, Quantum Physics III) in a two-course sequence covering quantum physics with applications drawn from modern physics. General formalism of quantum mechanics: states, operators, Dirac notation, representations, measurement theory. Harmonic oscillator: operator algebra, states. Quantum mechanics in three-dimensions: central potentials and the radial equation, bound and scattering states, qualitative analysis of wavefunctions. Angular momentum: operators, commutator algebra, eigenvalues and eigenstates, spherical harmonics. Spin: Stern-Gerlach devices and measurements, nuclear magnetic resonance, spin and statistics. Addition of angular momentum: Clebsch-Gordan series and coefficients, spin systems, and allotropic forms of hydrogenSubjects

General formalism of quantum mechanics: states | General formalism of quantum mechanics: states | operators | operators | Dirac notation | Dirac notation | representations | representations | measurement theory | measurement theory | Harmonic oscillator: operator algebra | Harmonic oscillator: operator algebra | states | states | Quantum mechanics in three-dimensions: central potentials and the radial equation | Quantum mechanics in three-dimensions: central potentials and the radial equation | bound and scattering states | bound and scattering states | qualitative analysis of wavefunctions | qualitative analysis of wavefunctions | Angular momentum: operators | Angular momentum: operators | commutator algebra | commutator algebra | eigenvalues and eigenstates | eigenvalues and eigenstates | spherical harmonics | spherical harmonics | Spin: Stern-Gerlach devices and measurements | Spin: Stern-Gerlach devices and measurements | nuclear magnetic resonance | nuclear magnetic resonance | spin and statistics | spin and statistics | Addition of angular momentum: Clebsch-Gordan series and coefficients | Addition of angular momentum: Clebsch-Gordan series and coefficients | spin systems | spin systems | allotropic forms of hydrogen | allotropic forms of hydrogen | Angular momentum | Angular momentum | Harmonic oscillator | Harmonic oscillator | operator algebra | operator algebra | Spin | Spin | Stern-Gerlach devices and measurements | Stern-Gerlach devices and measurements | central potentials and the radial equation | central potentials and the radial equation | Clebsch-Gordan series and coefficients | Clebsch-Gordan series and coefficients | quantum physics | quantum physicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.04 Quantum Physics I (MIT) 8.04 Quantum Physics I (MIT)

Description

Experimental basis of Quantum Physics: photoelectric effect, Compton scattering, photons, Franck-Hertz experiment, the Bohr atom, electron diffraction, De Broglie waves, and wave-particle duality of matter and light. Introduction to wave mechanics: Schroedinger's equation, wave functions, wave packets, probability amplitudes, stationary states, the Heisenberg uncertainty principle, and zero-point energies. Solutions to Schroedinger's equation in one dimension: transmission and reflection at a barrier, barrier penetration, potential wells, the simple harmonic oscillator. Schroedinger's equation in three dimensions: central potentials, and introduction to hydrogenic systems. Experimental basis of Quantum Physics: photoelectric effect, Compton scattering, photons, Franck-Hertz experiment, the Bohr atom, electron diffraction, De Broglie waves, and wave-particle duality of matter and light. Introduction to wave mechanics: Schroedinger's equation, wave functions, wave packets, probability amplitudes, stationary states, the Heisenberg uncertainty principle, and zero-point energies. Solutions to Schroedinger's equation in one dimension: transmission and reflection at a barrier, barrier penetration, potential wells, the simple harmonic oscillator. Schroedinger's equation in three dimensions: central potentials, and introduction to hydrogenic systems.Subjects

quantum physics: photoelectric effect | quantum physics: photoelectric effect | Compton scattering | Compton scattering | photons | photons | Franck-Hertz experiment | Franck-Hertz experiment | the Bohr atom | the Bohr atom | electron diffraction | electron diffraction | deBroglie waves | deBroglie waves | wave-particle duality of matter and light | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave mechanics: Schroedinger's equation | wave functions | wave functions | wave packets | wave packets | probability amplitudes | probability amplitudes | stationary states | stationary states | the Heisenberg uncertainty principle | the Heisenberg uncertainty principle | zero-point energies | zero-point energies | transmission and reflection at a barrier | transmission and reflection at a barrier | barrier penetration | barrier penetration | potential wells | potential wells | simple harmonic oscillator | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | Schroedinger's equation in three dimensions: central potentials | introduction to hydrogenic systems | introduction to hydrogenic systems | De Broglie waves | De Broglie wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This seminar explores the development and application of qualitative research designs and methods in political analysis. It considers a broad array of approaches, from exploratory narratives to focused-comparison case studies, for investigating plausible alternative hypotheses. The focus is on analysis, not data collection. This seminar explores the development and application of qualitative research designs and methods in political analysis. It considers a broad array of approaches, from exploratory narratives to focused-comparison case studies, for investigating plausible alternative hypotheses. The focus is on analysis, not data collection.Subjects

development and application of qualitative research designs and methods in political analysis | development and application of qualitative research designs and methods in political analysis | exploratory narrative | exploratory narrative | focused-comparison case studies | focused-comparison case studies | investigating plausible alternative hypotheses | investigating plausible alternative hypotheses | research methods | research methods | methodology | methodology | rival hypothesis | rival hypothesis | research designs | research designs | plausibility | plausibility | political analysis | political analysis | data analysis | data analysis | validity | validity | reliability | reliability | inference | inference | observations | observations | cases | cases | subjects | subjects | research agenda | research agenda | qualitative methods | qualitative methods | qualitative research | qualitative researchLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.310 Laboratory Chemistry (MIT) 5.310 Laboratory Chemistry (MIT)

Description

Laboratory Chemistry (5.310) introduces experimental chemistry for students requiring a chemistry laboratory who are not majoring in chemistry. Students must have completed general chemistry (5.111) and have completed or be concurrently enrolled in the first semester of organic chemistry (5.12). The course covers principles and applications of chemical laboratory techniques, including preparation and analysis of chemical materials, measurement of pH, gas and liquid chromatography, visible-ultraviolet spectrophotometry, infrared spectroscopy, kinetics, data analysis, and elementary synthesis. NOTE: The Staff for this course would like to acknowledge that the experiments include contributions from past instructors, course textbooks, and others affiliated with course #5.310. Since the Laboratory Chemistry (5.310) introduces experimental chemistry for students requiring a chemistry laboratory who are not majoring in chemistry. Students must have completed general chemistry (5.111) and have completed or be concurrently enrolled in the first semester of organic chemistry (5.12). The course covers principles and applications of chemical laboratory techniques, including preparation and analysis of chemical materials, measurement of pH, gas and liquid chromatography, visible-ultraviolet spectrophotometry, infrared spectroscopy, kinetics, data analysis, and elementary synthesis. NOTE: The Staff for this course would like to acknowledge that the experiments include contributions from past instructors, course textbooks, and others affiliated with course #5.310. Since theSubjects

lab | lab | chemistry | chemistry | laboratory | laboratory | experiment | experiment | pH | pH | gas chromatography | gas chromatography | liquid chromatography | liquid chromatography | visible-ultraviolet spectrophotometry | visible-ultraviolet spectrophotometry | infrared spectroscopy | infrared spectroscopy | kinetics | kinetics | data analysis | data analysis | elementary synthesis | elementary synthesis | amino acid | amino acid | ferrocene | ferrocene | essential oil | essential oil | potentiometric titration | potentiometric titration | techniques | techniques | measurement | measurement | materials | materials | data | data | analysis | analysis | elementary | elementary | synthesis | synthesis | amino | amino | acid | acid | essential | essential | oil | oil | gas | gas | chromatography | chromatography | infrared | infrared | spectroscopy | spectroscopy | liquid | liquid | potentiometric | potentiometric | titration | titration | visible | visible | ultraviolet | ultraviolet | spectrophotometry | spectrophotometryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.73 Introductory Quantum Mechanics I (MIT) 5.73 Introductory Quantum Mechanics I (MIT)

Description

5.73 covers fundamental concepts of quantum mechanics: wave properties, uncertainty principles, Schrodinger equation, and operator and matrix methods. Basic applications of the following are discussed: one-dimensional potentials (harmonic oscillator), three-dimensional centrosymetric potentials (hydrogen atom), and angular momentum and spin. The course also examines approximation methods: WKB method, variational principle, and perturbation theory. Acknowledgement The instructor would like to acknowledge Peter Giunta for preparing the original version of the materials for 5.73. 5.73 covers fundamental concepts of quantum mechanics: wave properties, uncertainty principles, Schrodinger equation, and operator and matrix methods. Basic applications of the following are discussed: one-dimensional potentials (harmonic oscillator), three-dimensional centrosymetric potentials (hydrogen atom), and angular momentum and spin. The course also examines approximation methods: WKB method, variational principle, and perturbation theory. Acknowledgement The instructor would like to acknowledge Peter Giunta for preparing the original version of the materials for 5.73.Subjects

quantum mechanics | quantum mechanics | wave properties | wave properties | uncertainty principles | uncertainty principles | Schrodinger | Schrodinger | operator method | operator method | matrix method | matrix method | one-dimensional potentials | one-dimensional potentials | harmonic oscillator | harmonic oscillator | three- dimensional centrosymetric potentials | three- dimensional centrosymetric potentials | angular momentum | angular momentum | spin | spin | approximation methods | approximation methods | WKB method | WKB method | variational principle | variational principle | perturbation theory | perturbation theoryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata7.29J Cellular Neurobiology (MIT) 7.29J Cellular Neurobiology (MIT)

Description

This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system. This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system.Subjects

nervous system | nervous system | neurons | neurons | synaptic transmission | synaptic transmission | neurochemistry | neurochemistry | neurodevelopment | neurodevelopment | membrane channels | membrane channels | resting potential | resting potential | action potential | action potential | synapse | synapse | neurotransmitters | neurotransmitters | receptors | receptors | axon | axon | olfaction | olfaction | thermoreception | thermoreceptionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

In this course, we will address how transcriptional regulators both prohibit and drive differentiation during the course of development. How does a stem cell know when to remain a stem cell and when to become a specific cell type? Are there global differences in the way the genome is read in multipotent and terminally differentiated cells? We will explore how stem cell pluripotency is preserved, how master regulators of cell-fate decisions execute developmental programs, and how chromatin regulators control undifferentiated versus differentiated states. Additionally, we will discuss how aberrant regulation of transcriptional regulators produces disorders such as developmental defects and cancer.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at In this course, we will address how transcriptional regulators both prohibit and drive differentiation during the course of development. How does a stem cell know when to remain a stem cell and when to become a specific cell type? Are there global differences in the way the genome is read in multipotent and terminally differentiated cells? We will explore how stem cell pluripotency is preserved, how master regulators of cell-fate decisions execute developmental programs, and how chromatin regulators control undifferentiated versus differentiated states. Additionally, we will discuss how aberrant regulation of transcriptional regulators produces disorders such as developmental defects and cancer.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department atSubjects

blueprint of life | blueprint of life | transcription | transcription | stem cells | stem cells | differentiation | differentiation | human tissues | human tissues | tissue regeneration | tissue regeneration | human disease | human disease | RNA and protein expression patterns | RNA and protein expression patterns | transcriptional regulation | transcriptional regulation | specialized gene expression programs | specialized gene expression programs | genome | genome | multipotent | multipotent | terminally differentiated | terminally differentiated | pluripotency | pluripotency | master regulators | master regulators | chromatin regulators | chromatin regulators | developmental defects | developmental defects | cancer | cancerLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.022 Physics II: Electricity and Magnetism (MIT) 8.022 Physics II: Electricity and Magnetism (MIT)

Description

This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials. This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts. This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials. This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.Subjects

Electricity | Electricity | Magnetism | Magnetism | Maxwell's equations | Maxwell's equations | electrostatic potential | electrostatic potential | vector potential | vector potential | dielectrics | dielectrics | Coulomb's Law | Coulomb's Law | Electric Field | Electric Field | Electric Flux | Electric Flux | Gauss's Law | Gauss's Law | Electric Potential Gradient | Electric Potential Gradient | Poisson Equations | Poisson Equations | Laplace Equations | Laplace Equations | Curl | Curl | Conductors | Conductors | Capacitance | Capacitance | Resistance | Resistance | Kirchhoff's Rules | Kirchhoff's Rules | EMF | EMF | RC Circuits | RC Circuits | Th?venin Equivalence | Th?venin Equivalence | Magnetic Force | Magnetic Force | Magnetic Field | Magnetic Field | Ampere's Law | Ampere's Law | Special Relativity | Special Relativity | Spacetime | Spacetime | Biot-Savart Law | Biot-Savart Law | Faraday's Law | Faraday's Law | Lenz's Law | Lenz's Law | RL Circuits | RL Circuits | AC Circuits | AC Circuits | Electromagnetic Radiation | Electromagnetic Radiation | Poynting Vector | Poynting VectorLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.022 Physics II: Electricity and Magnetism (MIT) 8.022 Physics II: Electricity and Magnetism (MIT)

Description

Course 8.022 is one of several second-term freshman physics courses offered at MIT. It is geared towards students who are looking for a thorough and challenging introduction to electricity and magnetism. Topics covered include: Electric and magnetic field and potential; introduction to special relativity; Maxwell's equations, in both differential and integral form; and properties of dielectrics and magnetic materials. In addition to the theoretical subject matter, several experiments in electricity and magnetism are performed by the students in the laboratory. Acknowledgments Prof. Sciolla would like to acknowledge the contributions of MIT Professors Scott Hughes and Peter Fisher to the development of this course. She would also like to acknowledge that these course materials include cont Course 8.022 is one of several second-term freshman physics courses offered at MIT. It is geared towards students who are looking for a thorough and challenging introduction to electricity and magnetism. Topics covered include: Electric and magnetic field and potential; introduction to special relativity; Maxwell's equations, in both differential and integral form; and properties of dielectrics and magnetic materials. In addition to the theoretical subject matter, several experiments in electricity and magnetism are performed by the students in the laboratory. Acknowledgments Prof. Sciolla would like to acknowledge the contributions of MIT Professors Scott Hughes and Peter Fisher to the development of this course. She would also like to acknowledge that these course materials include contSubjects

Electricity | Electricity | Magnetism | Magnetism | Maxwell's equations | Maxwell's equations | electrostatic potential | electrostatic potential | vector potential | vector potential | dielectrics | dielectrics | Coulomb's Law | Coulomb's Law | Electric Field | Electric Field | Electric Flux | Electric Flux | Gauss's Law | Gauss's Law | Electric Potential Gradient | Electric Potential Gradient | Poisson Equations | Poisson Equations | Laplace Equations | Laplace Equations | Curl | Curl | Conductors | Conductors | Capacitance | Capacitance | Resistance | Resistance | Kirchhoff's Rules | Kirchhoff's Rules | EMF | EMF | RC Circuits | RC Circuits | Th?venin Equivalence | Th?venin Equivalence | Magnetic Force | Magnetic Force | Magnetic Field | Magnetic Field | Ampere's Law | Ampere's Law | Special Relativity | Special Relativity | Spacetime | Spacetime | Biot-Savart Law | Biot-Savart Law | Faraday's Law | Faraday's Law | Lenz's Law | Lenz's Law | RL Circuits | RL Circuits | AC Circuits | AC Circuits | Electromagnetic Radiation | Electromagnetic Radiation | Poynting Vector | Poynting Vector | Magnetism | Maxwell's equations; | Magnetism | Maxwell's equations;License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.01 Physics I (MIT) 8.01 Physics I (MIT)

Description

Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics. Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics.Subjects

classical mechanics | classical mechanics | Space and time | Space and time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | experimental basis of Newton's laws | experimental basis of Newton's laws | particle dynamics | particle dynamics | universal gravitation | universal gravitation | collisions and conservation laws | collisions and conservation laws | work and potential energy | work and potential energy | vibrational motion | vibrational motion | conservative forces | conservative forces | central force motions | central force motions | inertial forces and non-inertial frames | inertial forces and non-inertial frames | rigid bodies and rotational dynamics | rigid bodies and rotational dynamics | forces and equilibrium | forces and equilibrium | space | space | time | time | space-time | space-time | planar motion | planar motion | forces | forces | equilibrium | equilibrium | Newton?s laws | Newton?s laws | collisions | collisions | conservation laws | conservation laws | work | work | potential energy | potential energy | inertial forces | inertial forces | non-inertial forces | non-inertial forces | rigid bodies | rigid bodies | rotational dynamics | rotational dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

An opportunity for graduate study of advanced subjects in Brain and Cognitive Sciences not included in other subject listings. The key topics covered in this course are Bipolar Disorder, Psychosis, Schizophrenia, Genetics of Psychiatric Disorder, DISC1, Ca++ Signaling, Neurogenesis and Depression, Lithium and GSK3 Hypothesis, Behavioral Assays, CREB in Addiction and Depressive Behaviors, The GABA System-I, The GABA System-II, The Glutamate Hypothesis of Schizophrenia, The Dopamine Pathway and DARPP32. An opportunity for graduate study of advanced subjects in Brain and Cognitive Sciences not included in other subject listings. The key topics covered in this course are Bipolar Disorder, Psychosis, Schizophrenia, Genetics of Psychiatric Disorder, DISC1, Ca++ Signaling, Neurogenesis and Depression, Lithium and GSK3 Hypothesis, Behavioral Assays, CREB in Addiction and Depressive Behaviors, The GABA System-I, The GABA System-II, The Glutamate Hypothesis of Schizophrenia, The Dopamine Pathway and DARPP32.Subjects

Brain and Cognitive Sciences | Brain and Cognitive Sciences | Bipolar Disorder | Bipolar Disorder | Psychosis | Psychosis | Schizophrenia | Schizophrenia | Genetics of Psychiatric Disorder | Genetics of Psychiatric Disorder | DISC1 | DISC1 | Ca++ Signaling | Ca++ Signaling | Depression | Depression | Lithium and GSK3 Hypothesis | Lithium and GSK3 Hypothesis | Behavioral Assays | Behavioral Assays | Depressive Behaviors | Depressive Behaviors | The GABA System-I | The GABA System-I | The GABA System-II | The GABA System-II | The Glutamate Hypothesis of Schizophrenia | The Glutamate Hypothesis of Schizophrenia | DARPP32 | DARPP32 | Genetics | Genetics | Neurobiology | Neurobiology | Pathophysiology | Pathophysiology | Psychiatry | PsychiatryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.01 Introduction to Neuroscience (MIT) 9.01 Introduction to Neuroscience (MIT)

Description

This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain. This course is an introduction to the mammalian nervous system, with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement, learning and memory, and diseases of the brain.Subjects

neuroscience | neuroscience | vision | vision | hearing | hearing | neuroanatomy | neuroanatomy | color vision | color vision | blind spot | blind spot | retinal phototransduction | retinal phototransduction | cortical maps | cortical maps | primary visual cortex | primary visual cortex | complex cells | complex cells | extrastriate cortex | extrastriate cortex | ear | ear | cochlea | cochlea | basilar membrane | basilar membrane | auditory transduction | auditory transduction | hair cells | hair cells | phase-locking | phase-locking | sound localization | sound localization | auditory cortex | auditory cortex | somatosensory system | somatosensory system | motor system | motor system | synaptic transmission | synaptic transmission | action potential | action potential | sympathetic neurons | sympathetic neurons | parasympathetic neurons | parasympathetic neurons | cellual neurophysiology | cellual neurophysiology | learning | learning | memory | memoryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.443 Statistics for Applications (MIT) 18.443 Statistics for Applications (MIT)

Description

This course is a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. Topics include: hypothesis testing and estimation, confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, correlation, decision theory, and Bayesian statistics. Note: Please see the syllabus for a description of the different versions of 18.443 taught at MIT. This course is a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. Topics include: hypothesis testing and estimation, confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, correlation, decision theory, and Bayesian statistics. Note: Please see the syllabus for a description of the different versions of 18.443 taught at MIT.Subjects

hypothesis testing | hypothesis testing | hypothesis estimation | hypothesis estimation | confidence intervals | confidence intervals | chi-square tests | chi-square tests | nonparametric statistics | nonparametric statistics | analysis of variance | analysis of variance | regression | regression | correlation | correlation | decision theory | decision theory | Bayesian statistics | Bayesian statisticsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.443 Statistics for Applications (MIT) 18.443 Statistics for Applications (MIT)

Description

This course provides a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. The course topics include hypothesis testing and estimation. It also includes confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, and correlation. This course provides a broad treatment of statistics, concentrating on specific statistical techniques used in science and industry. The course topics include hypothesis testing and estimation. It also includes confidence intervals, chi-square tests, nonparametric statistics, analysis of variance, regression, and correlation.Subjects

hypothesis testing and estimation; confidence intervals; chi-square tests; nonparametric statistics; analysis of variance; regression; correlation | hypothesis testing and estimation; confidence intervals; chi-square tests; nonparametric statistics; analysis of variance; regression; correlation | hypothesis testing and estimation | hypothesis testing and estimation | confidence intervals | confidence intervals | chi-square tests | chi-square tests | nonparametric statistics | nonparametric statistics | analysis of variance | analysis of variance | regression | regression | correlation | correlationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata22.105 Electromagnetic Interactions (MIT) 22.105 Electromagnetic Interactions (MIT)

Description

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker. This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.Subjects

electrostatics | electrostatics | coulomb's law | coulomb's law | gauss's law | gauss's law | potentials | potentials | laplace equations | laplace equations | poisson equations | poisson equations | capacitors | capacitors | resistors | resistors | child-langmuir law | child-langmuir law | magnetostatics | magnetostatics | ampere's law | ampere's law | biot-savart law | biot-savart law | magnets | magnets | inductors | inductors | superconducting magnets | superconducting magnets | single particle motion | single particle motion | lorentz force | lorentz force | quasi-statics | quasi-statics | faraday's law | faraday's law | maxwell equations | maxwell equations | plane waves | plane waves | reflection | reflection | refraction | refraction | klystrons | klystrons | gyrotrons | gyrotrons | lienard-wiechert potentials | lienard-wiechert potentials | thomson scattering | thomson scattering | compton scattering | compton scattering | synchrotron radiation | synchrotron radiation | bremsstrahlung radiation | bremsstrahlung radiation | cerenkov radiation | cerenkov radiationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata22.105 Electromagnetic Interactions (MIT) 22.105 Electromagnetic Interactions (MIT)

Description

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker. This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.Subjects

electrostatics | electrostatics | coulomb's law | coulomb's law | gauss's law | gauss's law | potentials | potentials | laplace equations | laplace equations | poisson equations | poisson equations | capacitors | capacitors | resistors | resistors | child-langmuir law | child-langmuir law | magnetostatics | magnetostatics | ampere's law | ampere's law | biot-savart law | biot-savart law | magnets | magnets | inductors | inductors | superconducting magnets | superconducting magnets | single particle motion | single particle motion | lorentz force | lorentz force | quasi-statics | quasi-statics | faraday's law | faraday's law | maxwell equations | maxwell equations | plane waves | plane waves | reflection | reflection | refraction | refraction | klystrons | klystrons | gyrotrons | gyrotrons | lienard-wiechert potentials | lienard-wiechert potentials | thomson scattering | thomson scattering | compton scattering | compton scattering | synchrotron radiation | synchrotron radiation | bremsstrahlung radiation | bremsstrahlung radiation | cerenkov radiation | cerenkov radiationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.04 Quantum Physics I (MIT) 8.04 Quantum Physics I (MIT)

Description

Includes audio/video content: AV lectures. This course covers the experimental basis of quantum physics. It introduces wave mechanics, SchrÃ¶dinger's equation in a single dimension, and SchrÃ¶dinger's equation in three dimensions.It is the first course in the undergraduate Quantum Physics sequence, followed by 8.05 Quantum Physics II and 8.06 Quantum Physics III. Includes audio/video content: AV lectures. This course covers the experimental basis of quantum physics. It introduces wave mechanics, SchrÃ¶dinger's equation in a single dimension, and SchrÃ¶dinger's equation in three dimensions.It is the first course in the undergraduate Quantum Physics sequence, followed by 8.05 Quantum Physics II and 8.06 Quantum Physics III.Subjects

quantum physics: photoelectric effect | quantum physics: photoelectric effect | Compton scattering | Compton scattering | photons | photons | Franck-Hertz experiment | Franck-Hertz experiment | the Bohr atom | the Bohr atom | electron diffraction | electron diffraction | deBroglie waves | deBroglie waves | wave-particle duality of matter and light | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave mechanics: Schroedinger's equation | wave functions | wave functions | wave packets | wave packets | probability amplitudes | probability amplitudes | stationary states | stationary states | the Heisenberg uncertainty principle | the Heisenberg uncertainty principle | zero-point energies | zero-point energies | transmission and reflection at a barrier | transmission and reflection at a barrier | barrier penetration | barrier penetration | potential wells | potential wells | simple harmonic oscillator | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | and introduction to hydrogenic systems | Schroedinger's equation in three dimensions: central potentials | and introduction to hydrogenic systemsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.04 Quantum Physics I (MIT) 8.04 Quantum Physics I (MIT)

Description

This course covers the experimental basis of quantum physics, introduces wave mechanics, SchrÃ¶dinger's equation in a single dimension, and SchrÃ¶dinger's equation in three dimensions. This course covers the experimental basis of quantum physics, introduces wave mechanics, SchrÃ¶dinger's equation in a single dimension, and SchrÃ¶dinger's equation in three dimensions.Subjects

quantum physics: photoelectric effect | quantum physics: photoelectric effect | Compton scattering | Compton scattering | photons | photons | Franck-Hertz experiment | Franck-Hertz experiment | the Bohr atom | the Bohr atom | electron diffraction | electron diffraction | deBroglie waves | deBroglie waves | wave-particle duality of matter and light | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave mechanics: Schroedinger's equation | wave functions | wave functions | wave packets | wave packets | probability amplitudes | probability amplitudes | stationary states | stationary states | the Heisenberg uncertainty principle | the Heisenberg uncertainty principle | zero-point energies | zero-point energies | transmission and reflection at a barrier | transmission and reflection at a barrier | barrier penetration | barrier penetration | potential wells | potential wells | simple harmonic oscillator | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | Schroedinger's equation in three dimensions: central potentials | and introduction to hydrogenic systems. | and introduction to hydrogenic systems.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Subjects

Sistema de unidades | Sistema de unidades | éctrico | éctrico | Fuerza de Lorentz | Fuerza de Lorentz | Campo de ruptura | Campo de ruptura | éctrica | éctrica | Densidad de corriente | Densidad de corriente | Ley de Gauss | Ley de Gauss | ía potencial | ía potencial | éctricos | éctricos | ón | ón | ático | ático | Fuerzas conservativas | Fuerzas conservativas | éctrico de una carga puntual | éctrico de una carga puntual | ón de la trayectoria | ón de la trayectoria | Diferencia de potencial | Diferencia de potencial | ísica Aplicada | ísica Aplicada | Trabajo | Trabajo | ético atómico | ético atómico | ática | ática | ía | ía | Fisica Aplicada | Fisica Aplicada | éticos | éticos | ética sobre corrientes | ética sobre corrientes | Distribuciones continuas de carga | Distribuciones continuas de carga | ísica Teórica | ísica Teórica | Magnetismo en la materia | Magnetismo en la materia | fuerza | fuerza | Densidades de carga | Densidades de carga | Resistencia | Resistencia | Inductancia mutua | Inductancia mutua | Movimiento circular | Movimiento circular | éticas | éticas | ética | ética | Ley de Biot y Savart | Ley de Biot y Savart | ético | ético | Concepto | Concepto | momento lineal | momento lineal | Condensadores | Condensadores | Ley de Ampere | Ley de Ampere | Ley de Lenz | Ley de Lenz | Elemento de corriente | Elemento de corriente | Autoinductancia | Autoinductancia | Ley de Ohm | Ley de Ohm | Momento angular | Momento angular | Ley de Coulomb | Ley de Coulomb | ámica de una partícula | ámica de una partícula | Momentos de fuerza sobre espiras de corriente e imanes | Momentos de fuerza sobre espiras de corriente e imanes | Fisica Teorica | Fisica Teorica | ía magnética | ía magnética | Conductores y aislantes | Conductores y aislantes | ón de Faraday | ón de Faraday | Intensidad | Intensidad | Leyes de Newton | Leyes de Newton | momento de las fuerzas | momento de las fuerzas | Fuerzas entre corrientes | Fuerzas entre corrientes | íneas de campo eléctrico | íneas de campo eléctrico | Potencia | PotenciaLicense

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_allAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata