Searching for power : 710 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Remembering the Mammy and Daddy! Remembering the Mammy and Daddy!

Description

Subjects

ireland | ireland | usa | usa | grave | grave | power | power | gravestone | gravestone | emigrant | emigrant | glassnegative | glassnegative | okeeffe | okeeffe | countywaterford | countywaterford | tramore | tramore | newarknewjersey | newarknewjersey | holycrosscemetery | holycrosscemetery | nationallibraryofireland | nationallibraryofireland | patrickpower | patrickpower | anniepower | anniepower | cratey | cratey | ahpoole | ahpoole | prospered | prospered | locationidentified | locationidentified | poolecollection | poolecollection | arthurhenripoole | arthurhenripoole | thomasflanaganpower | thomasflanaganpower | walterpower | walterpower | margaretflanaganpower | margaretflanaganpower

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.334 Power Electronics (MIT) 6.334 Power Electronics (MIT)

Description

6.334 examines the application of electronics to energy conversion and control. Topics covered include: modeling, analysis, and control techniques; design of power circuits including inverters, rectifiers, and DC-DC converters; analysis and design of magnetic components and filters; and characteristics of power semiconductor devices. Numerous application examples will be presented such as motion control systems, power supplies, and radio-frequency power amplifiers. The course is worth 6 engineering design points. 6.334 examines the application of electronics to energy conversion and control. Topics covered include: modeling, analysis, and control techniques; design of power circuits including inverters, rectifiers, and DC-DC converters; analysis and design of magnetic components and filters; and characteristics of power semiconductor devices. Numerous application examples will be presented such as motion control systems, power supplies, and radio-frequency power amplifiers. The course is worth 6 engineering design points.

Subjects

power electronics | power electronics | energy conversion and control | energy conversion and control | modeling | modeling | analysis | analysis | control techniques | control techniques | power circuit design | power circuit design | inverters | inverters | rectifiers | rectifiers | dc-dc converters | dc-dc converters | magnetic components;filters | magnetic components;filters | power semiconductor devices | power semiconductor devices | motion control systems | motion control systems | power supplies | power supplies | radio-frequency power amplifiers | radio-frequency power amplifiers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.691 Seminar in Electric Power Systems (MIT) 6.691 Seminar in Electric Power Systems (MIT)

Description

This course comprises of a seminar on planning and operation of modern electric power systems. Content varies with current interests of instructor and class; emphasis on engineering aspects, but economic issues may be examined too. Core topics include: overview of power system structure and operation; representation of components, including transmission lines, transformers, generating plants, loads; power flow analysis, dynamics and control of multimachine systems, steady-state and transient stability, system protection; economic dispatch; mobile and isolated power systems; computation and simulation. This course comprises of a seminar on planning and operation of modern electric power systems. Content varies with current interests of instructor and class; emphasis on engineering aspects, but economic issues may be examined too. Core topics include: overview of power system structure and operation; representation of components, including transmission lines, transformers, generating plants, loads; power flow analysis, dynamics and control of multimachine systems, steady-state and transient stability, system protection; economic dispatch; mobile and isolated power systems; computation and simulation.

Subjects

Planning and operation of modern electric power systems | Planning and operation of modern electric power systems | engineering aspects | engineering aspects | power system structure and operation | power system structure and operation | representation of components | representation of components | transmission lines | transmission lines | transformers | transformers | generating plants | generating plants | loads | loads | power flow analysis | power flow analysis | dynamics and control of multimachine systems | dynamics and control of multimachine systems | steady-state and transient stability | steady-state and transient stability | system protection | system protection | economic dispatch | economic dispatch | mobil and isolated power systems | mobil and isolated power systems | computation and simulation | computation and simulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21H.207 The Energy Crisis: Past and Present (MIT) 21H.207 The Energy Crisis: Past and Present (MIT)

Description

This course will explore how Americans have confronted energy challenges since the end of World War II. Beginning in the 1970s, Americans worried about the supply of energy. As American production of oil declined, would the US be able to secure enough fuel to sustain their high consumption lifestyles? At the same time, Americans also began to fear the environmental side affects of energy use. Even if the US had enough fossil fuel, would its consumption be detrimental to health and safety? This class examines how Americans thought about these questions in the last half-century. We will consider the political, diplomatic, economic, cultural, and technological aspects of the energy crisis. Topics include nuclear power, suburbanization and the new car culture, the environmental movement and th This course will explore how Americans have confronted energy challenges since the end of World War II. Beginning in the 1970s, Americans worried about the supply of energy. As American production of oil declined, would the US be able to secure enough fuel to sustain their high consumption lifestyles? At the same time, Americans also began to fear the environmental side affects of energy use. Even if the US had enough fossil fuel, would its consumption be detrimental to health and safety? This class examines how Americans thought about these questions in the last half-century. We will consider the political, diplomatic, economic, cultural, and technological aspects of the energy crisis. Topics include nuclear power, suburbanization and the new car culture, the environmental movement and th

Subjects

energy | energy | USA | USA | oil embargo | oil embargo | Gulf War | Gulf War | Richard Nixon | Richard Nixon | Ronald Reagan | Ronald Reagan | Jimmy Carter | Jimmy Carter | George Bush | George Bush | nuclear power | nuclear power | wind power | wind power | fossil fuel | fossil fuel | automobiles | automobiles | suburbia | suburbia | Iran Hostage Crisis | Iran Hostage Crisis | climate change | climate change | global warming | global warming | oil drilling | oil drilling | Kyoto Protocol | Kyoto Protocol | solar power | solar power | OPEC | OPEC | EPA | EPA | Earth Day | Earth Day | environmentalism | environmentalism | atomic bomb | atomic bomb | Gerald Ford | Gerald Ford | Levittown | Levittown | Manhattan Project | Manhattan Project

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.711 D-Lab: Energy (MIT) EC.711 D-Lab: Energy (MIT)

Description

Includes audio/video content: AV lectures, AV special element video. D-Lab: Energy offers a hands-on, project-based approach that engages students in understanding and addressing the applications of small-scale, sustainable energy technology in developing countries where compact, robust, low-cost systems for generating power are required. Projects may include micro-hydro, solar, or wind turbine generators along with theoretical analysis, design, prototype construction, evaluation and implementation. Students will have the opportunity both to travel to Nicaragua during spring break to identify and implement projects. D-Lab: Energy is part of MIT's D-Lab program, which fosters the development of appropriate technologies and sustainable solutions within the framework of international develop Includes audio/video content: AV lectures, AV special element video. D-Lab: Energy offers a hands-on, project-based approach that engages students in understanding and addressing the applications of small-scale, sustainable energy technology in developing countries where compact, robust, low-cost systems for generating power are required. Projects may include micro-hydro, solar, or wind turbine generators along with theoretical analysis, design, prototype construction, evaluation and implementation. Students will have the opportunity both to travel to Nicaragua during spring break to identify and implement projects. D-Lab: Energy is part of MIT's D-Lab program, which fosters the development of appropriate technologies and sustainable solutions within the framework of international develop

Subjects

sustainable energy | sustainable energy | renewable energy | renewable energy | green energy | green energy | sustainable development | sustainable development | third world | third world | appropriate technology | appropriate technology | solar power | solar power | wind power | wind power | micro-hydro power | micro-hydro power | design | design | co-creation | co-creation | Nicaragua | Nicaragua

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.422 Field Seminar in International Political Economy (MIT) 17.422 Field Seminar in International Political Economy (MIT)

Description

This field seminar in international political economy covers major theoretical, empirical, and policy perspectives. The basic orientation is disciplinary and comparative (over time and across countries, regions, firms), spanning issues relevant to both industrial and developing states. Special attention is given to challenges and dilemmas shaped by the macro-level consequences of micro-level behavior, and by micro-level adjustments to macro-level influences. This field seminar in international political economy covers major theoretical, empirical, and policy perspectives. The basic orientation is disciplinary and comparative (over time and across countries, regions, firms), spanning issues relevant to both industrial and developing states. Special attention is given to challenges and dilemmas shaped by the macro-level consequences of micro-level behavior, and by micro-level adjustments to macro-level influences.

Subjects

international relations | international relations | political science | political science | economics | economics | wealth | wealth | neoclassical | neoclassical | development | development | ecology | ecology | power | power | trade | trade | capital | capital | foreign investment | foreign investment | intellectual property | intellectual property | migration | migration | foreignpolicy | foreignpolicy | globalization | globalization | internet | internet | sustainability | sustainability | institutions | institutions | foreign policy | foreign policy | IPE | IPE | dual national objectives | dual national objectives | global context | global context | pursuit of power | pursuit of power | pursuit of wealth | pursuit of wealth | international political economy | international political economy | neoclassical economics | neoclassical economics | development economics | development economics | ecological economics | ecological economics | lateral pressure | lateral pressure | perspectives | perspectives | structural views | structural views | power relations | power relations | politics | politics | international trade | international trade | capital flows | capital flows | intellectual property rights | intellectual property rights | international migration | international migration | foreign economic policy | foreign economic policy | international economic institutions | international economic institutions | theoretical perspectives | theoretical perspectives | empirical perspectives | empirical perspectives | policy perspectives | policy perspectives | disciplinary | disciplinary | comparative | comparative | time | time | countries | countries | regions | regions | firms | firms | industrial states | industrial states | developing states | developing states | macro-level consequences | macro-level consequences | micro-level behavior | micro-level behavior | micro-level adjustments | micro-level adjustments | macro-level influences | macro-level influences | complexity | complexity | localization | localization | technology | technology | knowledge economy | knowledge economy | finance | finance | global markets | global markets | political economy | political economy | e-commerce | e-commerce

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.482 U.S. Military Power (MIT) 17.482 U.S. Military Power (MIT)

Description

The purpose of this course is to acquaint the student with the missions, capabilities, and costs of the largely non-nuclear forces that make up the bulk of the U.S. military establishment. The course will also introduce the student to basic techniques for the assessment of relative military capabilities between adversaries in given theaters of military action. Central to the course will be an examination of historical cases of military action that shed light on current defence issues. Many of these cases are recent. The purpose of this course is to acquaint the student with the missions, capabilities, and costs of the largely non-nuclear forces that make up the bulk of the U.S. military establishment. The course will also introduce the student to basic techniques for the assessment of relative military capabilities between adversaries in given theaters of military action. Central to the course will be an examination of historical cases of military action that shed light on current defence issues. Many of these cases are recent.

Subjects

united states | united states | us military | us military | military | military | non-nuclear | non-nuclear | adversaries | adversaries | military action | military action | defense | defense | strategy | strategy | campaign analysis | campaign analysis | airpower | airpower | battle of the bulge | battle of the bulge | intelligence | intelligence | military operations | military operations | naval power | naval power | power projection | power projection | guadalcanal | guadalcanal | desert storm | desert storm | operation iraqi freedom | operation iraqi freedom | afghanistan | iraq | afghanistan | iraq | counter-insurgency | counter-insurgency | humanitarian military intervention | humanitarian military intervention | kosovo | nuclear age | kosovo | nuclear age | nuclear proliferation | nuclear proliferation | american defense planning | american defense planning | ground campaign | ground campaign | air campaign | air campaign | missile targeting | missile targeting | logistics-centric | logistics-centric | limited war | limited war | surface warfare | surface warfare | anti-submarine warfare | anti-submarine warfare | israel/lebanon war | israel/lebanon war | operation allied force | operation allied force | libya | libya

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.433 International Relations of East Asia (MIT) 17.433 International Relations of East Asia (MIT)

Description

The aim of this course is to introduce and analyze the international relations of East Asia. With four great powers, three nuclear weapons states, and two of the world's largest economies, East Asia is one of the most dynamic and consequential regions in world politics. This course will examine the sources of conflict and cooperation in both periods, assessing competing explanations for key events in East Asia's international relations. Readings will be drawn from international relations theory, political science and history. The aim of this course is to introduce and analyze the international relations of East Asia. With four great powers, three nuclear weapons states, and two of the world's largest economies, East Asia is one of the most dynamic and consequential regions in world politics. This course will examine the sources of conflict and cooperation in both periods, assessing competing explanations for key events in East Asia's international relations. Readings will be drawn from international relations theory, political science and history.

Subjects

International relations | International relations | East Asia | East Asia | great powers | great powers | nuclear weapons states | nuclear weapons states | largest economies | largest economies | world politics | world politics | Cold War | Cold War | competition | competition | conflict superpowers | conflict superpowers | post-Cold War era | post-Cold War era | global economy | global economy | balance | balance | power | power | cooperation | cooperation | theory | theory | political science | political science | history | history

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT) 6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions. This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

ESD.013 | ESD.013 | electromagnetics | electromagnetics | applications | applications | wireless communications | wireless communications | circuits | circuits | computer interconnects | computer interconnects | peripherals | peripherals | optical fiber links | optical fiber links | microwave communications | microwave communications | radar | radar | antennas | antennas | sensors | sensors | micro-electromechanical systems | micro-electromechanical systems | power generation | power generation | power transmission | power transmission | quasistatic solutions | quasistatic solutions | dynamic solutions | dynamic solutions | Maxwell | Maxwell | Maxwell's equations | Maxwell's equations | waves | waves | radiation | radiation | diffraction | diffraction | guided waves | guided waves | unguided waves | unguided waves | resonance | resonance | forces | forces | power | power | energy | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Employees of the Florida Power and Light Company - Miami Employees of the Florida Power and Light Company - Miami

Description

Subjects

florida | florida | miami | miami | floridapowerlightcompany | floridapowerlightcompany | employees | employees | groupportraits | groupportraits | floridapowerlight | floridapowerlight | floridapower | floridapower | fpl | fpl | transformers | transformers | transformer | transformer | linemen | linemen

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Florida Power and Light Company ice wagon Florida Power and Light Company ice wagon

Description

Subjects

florida | florida | floridapowerlightcompany | floridapowerlightcompany | icewagons | icewagons | buildings | buildings | horses | horses | floridapowerlight | floridapowerlight | fpl | fpl | icewagon | icewagon | floridapower | floridapower

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT) 6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.The instructors of this course extend a general acknowledgment to the many students and instructors who have made major contributions to the 6.013 course materials over the years, and apologize for any residual errors that may remain in these writ This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.The instructors of this course extend a general acknowledgment to the many students and instructors who have made major contributions to the 6.013 course materials over the years, and apologize for any residual errors that may remain in these writ

Subjects

electromagnetics | electromagnetics | applications | applications | wireless communications | wireless communications | circuits | circuits | computer interconnects | computer interconnects | peripherals | peripherals | optical fiber links | optical fiber links | microwave | microwave | communications | communications | radar | radar | antennas | antennas | sensors | sensors | micro-electromechanical systems | micro-electromechanical systems | power generation | power generation | power transmission | power transmission | quasistatic solutions | quasistatic solutions | dynamic solutions | dynamic solutions | Maxwell | Maxwell | Maxwell's equations | Maxwell's equations | waves | waves | radiation | radiation | diffraction | diffraction | guided waves | guided waves | unguided waves | unguided waves | resonance | resonance | forces | forces | power | power | energy | energy | microwave communications | microwave communications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.422 Field Seminar in International Political Economy (MIT) 17.422 Field Seminar in International Political Economy (MIT)

Description

This field seminar in international political economy covers major theoretical, empirical, and policy perspectives. The basic orientation is disciplinary and comparative (over time and across countries, regions, firms), spanning issues relevant to both industrial and developing states. Special attention is given to challenges and dilemmas shaped by the macro-level consequences of micro-level behavior, and by micro-level adjustments to macro-level influences. This field seminar in international political economy covers major theoretical, empirical, and policy perspectives. The basic orientation is disciplinary and comparative (over time and across countries, regions, firms), spanning issues relevant to both industrial and developing states. Special attention is given to challenges and dilemmas shaped by the macro-level consequences of micro-level behavior, and by micro-level adjustments to macro-level influences.

Subjects

international relations | international relations | political science | political science | economics | economics | wealth | wealth | neoclassical | neoclassical | development | development | ecology | ecology | power | power | trade | trade | capital | capital | foreign investment | foreign investment | intellectual property | intellectual property | migration | migration | foreignpolicy | foreignpolicy | globalization | globalization | internet | internet | sustainability | sustainability | institutions | institutions | foreign policy | foreign policy | IPE | IPE | dual national objectives | dual national objectives | global context | global context | pursuit of power | pursuit of power | pursuit of wealth | pursuit of wealth | international political economy | international political economy | neoclassical economics | neoclassical economics | development economics | development economics | ecological economics | ecological economics | lateral pressure | lateral pressure | perspectives | perspectives | structural views | structural views | power relations | power relations | politics | politics | international trade | international trade | capital flows | capital flows | intellectual property rights | intellectual property rights | international migration | international migration | foreign economic policy | foreign economic policy | international economic institutions | international economic institutions | theoretical perspectives | theoretical perspectives | empirical perspectives | empirical perspectives | policy perspectives | policy perspectives | disciplinary | disciplinary | comparative | comparative | time | time | countries | countries | regions | regions | firms | firms | industrial states | industrial states | developing states | developing states | macro-level consequences | macro-level consequences | micro-level behavior | micro-level behavior | micro-level adjustments | micro-level adjustments | macro-level influences | macro-level influences | complexity | complexity | localization | localization | technology | technology | knowledge economy | knowledge economy | finance | finance | global markets | global markets | political economy | political economy | e-commerce | e-commerce

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.334 Power Electronics (MIT)

Description

6.334 examines the application of electronics to energy conversion and control. Topics covered include: modeling, analysis, and control techniques; design of power circuits including inverters, rectifiers, and DC-DC converters; analysis and design of magnetic components and filters; and characteristics of power semiconductor devices. Numerous application examples will be presented such as motion control systems, power supplies, and radio-frequency power amplifiers. The course is worth 6 engineering design points.

Subjects

power electronics | energy conversion and control | modeling | analysis | control techniques | power circuit design | inverters | rectifiers | dc-dc converters | magnetic components;filters | power semiconductor devices | motion control systems | power supplies | radio-frequency power amplifiers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.334 Power Electronics (MIT)

Description

6.334 examines the application of electronics to energy conversion and control. Topics covered include: modeling, analysis, and control techniques; design of power circuits including inverters, rectifiers, and DC-DC converters; analysis and design of magnetic components and filters; and characteristics of power semiconductor devices. Numerous application examples will be presented such as motion control systems, power supplies, and radio-frequency power amplifiers. The course is worth 6 engineering design points.

Subjects

power electronics | energy conversion and control | modeling | analysis | control techniques | power circuit design | inverters | rectifiers | dc-dc converters | magnetic components;filters | power semiconductor devices | motion control systems | power supplies | radio-frequency power amplifiers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.061 Introduction to Electric Power Systems (MIT) 6.061 Introduction to Electric Power Systems (MIT)

Description

This course is offered both to undergraduates (6.061) and graduates (6.979), where the graduate version has different problem sets and an additional term project. 6.061 / 6.979 is an introductory course in the field of electric power systems and electrical to mechanical energy conversion. Material encountered in the subject includes: Fundamentals of energy-handling electric circuits and electromechanical apparatus. Modeling of magnetic field devices and description of their behavior using appropriate models. Simplification of problems using transformation techniques. Power electric circuits, magnetic circuits, lumped parameter electromechanics, elements of linear and rotating electric machinery. Modeling of synchronous, induction and dc machinery. The course uses examples from current rese This course is offered both to undergraduates (6.061) and graduates (6.979), where the graduate version has different problem sets and an additional term project. 6.061 / 6.979 is an introductory course in the field of electric power systems and electrical to mechanical energy conversion. Material encountered in the subject includes: Fundamentals of energy-handling electric circuits and electromechanical apparatus. Modeling of magnetic field devices and description of their behavior using appropriate models. Simplification of problems using transformation techniques. Power electric circuits, magnetic circuits, lumped parameter electromechanics, elements of linear and rotating electric machinery. Modeling of synchronous, induction and dc machinery. The course uses examples from current rese

Subjects

electric power | electric power | electric power system | electric power system | electric circuits | electric circuits | electromechanical apparatus | electromechanical apparatus | magnetic field devices | magnetic field devices | transformation techniques | transformation techniques | magnetic circuits | magnetic circuits | lumped parameter electromechanics | lumped parameter electromechanics | linear electric machinery | linear electric machinery | rotating electric machinery | rotating electric machinery | synchronous machinery | synchronous machinery | induction machinery | induction machinery | dc machinery. | dc machinery. | mechanical energy conversion | mechanical energy conversion | energy | energy | new applications | new applications | dc machinery | dc machinery

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Elec. Light - Ice Plant And - Water Works. Arlington Tex. Elec. Light - Ice Plant And - Water Works. Arlington Tex.

Description

Subjects

streets | streets | cities | cities | towns | towns | rppc | rppc | electricpowerplants | electricpowerplants | hydroelectricpowerplants | hydroelectricpowerplants

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.081J Introduction to Sustainable Energy (MIT) 22.081J Introduction to Sustainable Energy (MIT)

Description

This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments. This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments.

Subjects

22.081 | 22.081 | 2.650 | 2.650 | 10.291 | 10.291 | 1.818 | 1.818 | 10.391 | 10.391 | 11.371 | 11.371 | 22.811 | 22.811 | ESD.166 | ESD.166 | energy transfer | energy transfer | clean technologies | clean technologies | energy resource assessment | energy resource assessment | energy conversion | energy conversion | wind power | wind power | nuclear proliferation | nuclear proliferation | nuclear waste disposal | nuclear waste disposal | carbon management options | carbon management options | geothermal energy | geothermal energy | solar photovoltaics | solar photovoltaics | solar thermal energy | solar thermal energy | biomass energy | biomass energy | biomass conversion | biomass conversion | eco-buildings | eco-buildings | hydropower | hydropower

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.06 Engineering of Nuclear Systems (MIT) 22.06 Engineering of Nuclear Systems (MIT)

Description

In this course, students explore the engineering design of nuclear power plants using the basic principles of reactor physics, thermodynamics, fluid flow and heat transfer. Topics include reactor designs, thermal analysis of nuclear fuel, reactor coolant flow and heat transfer, power conversion cycles, nuclear safety, and reactor dynamic behavior. In this course, students explore the engineering design of nuclear power plants using the basic principles of reactor physics, thermodynamics, fluid flow and heat transfer. Topics include reactor designs, thermal analysis of nuclear fuel, reactor coolant flow and heat transfer, power conversion cycles, nuclear safety, and reactor dynamic behavior.

Subjects

nuclear power overview | nuclear power overview | accelerators | accelerators | reactor physics review | reactor physics review | thermal parameters | thermal parameters | PWR | PWR | BWR | BWR | reactor design | reactor design | thermal analysis of fuel | thermal analysis of fuel | ideal gas and incompressible fluid models | ideal gas and incompressible fluid models | single phase coolant heat transfer | single phase coolant heat transfer | pure substance model | pure substance model | two-phase coolant flow and heat transfer | two-phase coolant flow and heat transfer | power cycles | power cycles | nuclear safety | nuclear safety

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.061 Introduction to Electric Power Systems (MIT) 6.061 Introduction to Electric Power Systems (MIT)

Description

This course is an introductory subject in the field of electric power systems and electrical to mechanical energy conversion. Electric power has become increasingly important as a way of transmitting and transforming energy in industrial, military and transportation uses. Examples of new uses for electric power include all manners of electric transportation systems (electric trains that run under catenary, diesel-electric railroad locomotion, 'maglev' medium and high speed tracked vehicles, electric transmission systems for ships, replacement of hydraulics in high performance actuators, aircraft launch and recovery systems, battery powered factory material transport systems, electric and hybrid electric cars and buses, even the 'more electric' airplane). The material in this subject w This course is an introductory subject in the field of electric power systems and electrical to mechanical energy conversion. Electric power has become increasingly important as a way of transmitting and transforming energy in industrial, military and transportation uses. Examples of new uses for electric power include all manners of electric transportation systems (electric trains that run under catenary, diesel-electric railroad locomotion, 'maglev' medium and high speed tracked vehicles, electric transmission systems for ships, replacement of hydraulics in high performance actuators, aircraft launch and recovery systems, battery powered factory material transport systems, electric and hybrid electric cars and buses, even the 'more electric' airplane). The material in this subject w

Subjects

electric power | electric power | electric power system | electric power system | electric circuits | electric circuits | electromechanical apparatus | electromechanical apparatus | magnetic field devices | magnetic field devices | transformation techniques | transformation techniques | magnetic circuits | magnetic circuits | lumped parameter electromechanics | lumped parameter electromechanics | linear electric machinery | linear electric machinery | rotating electric machinery | rotating electric machinery | synchronous machinery | synchronous machinery | induction machinery | induction machinery | dc machinery. | dc machinery. | mechanical energy conversion | mechanical energy conversion | energy | energy | new applications | new applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.39 Integration of Reactor Design, Operations, and Safety (MIT) 22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations. This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.

Subjects

nuclear reactor | nuclear reactor | nuclear power | nuclear power | NRC | NRC | PWR | PWR | pressurized water reactor | pressurized water reactor | GFR | GFR | LWR | LWR | light water reactor | light water reactor | nuclear safety | nuclear safety | meltdown | meltdown | nuclear risk | nuclear risk | PRA | PRA | probabalistic risk assessment | probabalistic risk assessment | risk assessment | risk assessment | thermal | thermal | hydraulic | hydraulic | nuclear fuel | nuclear fuel | nuclear waste | nuclear waste | accident | accident | radiation radioactivity | radiation radioactivity | nuclear plant | nuclear plant | cooling Seabrook | cooling Seabrook | fission | fission | uranium | uranium | half-life | half-life | plutonium | plutonium | economics of nuclear power | economics of nuclear power | materials slection | materials slection | IRIS | IRIS | materials selection | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.15J Networks (MIT) 14.15J Networks (MIT)

Description

Networks are ubiquitous in our modern society. The World Wide Web that links us to and enables information flows with the rest of the world is the most visible example. It is, however, only one of many networks within which we are situated. Our social life is organized around networks of friends and colleagues. These networks determine our information, influence our opinions, and shape our political attitudes. They also link us, often through important but weak ties, to everybody else in the United States and in the world. Economic and financial markets also look much more like networks than anonymous marketplaces. Firms interact with the same suppliers and customers and use Web-like supply chains. Financial linkages, both among banks and between consumers, companies and banks, also form a Networks are ubiquitous in our modern society. The World Wide Web that links us to and enables information flows with the rest of the world is the most visible example. It is, however, only one of many networks within which we are situated. Our social life is organized around networks of friends and colleagues. These networks determine our information, influence our opinions, and shape our political attitudes. They also link us, often through important but weak ties, to everybody else in the United States and in the world. Economic and financial markets also look much more like networks than anonymous marketplaces. Firms interact with the same suppliers and customers and use Web-like supply chains. Financial linkages, both among banks and between consumers, companies and banks, also form a

Subjects

networks | networks | crowds | crowds | markets | markets | highly connected world | highly connected world | social networks | social networks | economic networks | economic networks | power networks | power networks | communication networks | communication networks | game theory | game theory | graph theory | graph theory | branching processes | branching processes | random graph models | random graph models | rich get richer phenomena | rich get richer phenomena | power laws | power laws | small worlds | small worlds | Erd?s-Renyi graphs | Erd?s-Renyi graphs | degree distributions | degree distributions | phase transitions | phase transitions | connectedness | connectedness | and giant component | and giant component | link analysis | link analysis | web search | web search | navigation | navigation | decentralized search | decentralized search | preferential attachment | preferential attachment | epidemics | epidemics | diffusion through networks | diffusion through networks | SIR | SIR | (susceptible | (susceptible | infected | infected | removed) | removed) | SIS | SIS | susceptible) | susceptible) | strategies | strategies | payoffs | payoffs | normal forms | normal forms | Nash equilibrium | Nash equilibrium | traffic networks | traffic networks | negative externalities | negative externalities | Braess' paradox | Braess' paradox | potential games | potential games | myopic behavior | myopic behavior | fictitious play | fictitious play | repeated games | repeated games | prisoner's dilemma | prisoner's dilemma | cooperation | cooperation | perfect information | perfect information | imperfect information | imperfect information | positive externalities | positive externalities | strategic complements | strategic complements | path dependence | path dependence | diffusion of innovation | diffusion of innovation | contagion pheonomena | contagion pheonomena | Bayes's rule | Bayes's rule | Bayesian Nash equilibrium | Bayesian Nash equilibrium | first price auctions | first price auctions | second price auctions | second price auctions | social learning | social learning | Bayesian learning | Bayesian learning | copying | copying | herding | herding | herd behavior | herd behavior | informational cascades | informational cascades | decisions | decisions | social choice | social choice | Condorcet jury theorem | Condorcet jury theorem | political economy | political economy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.391J Sustainable Energy (MIT) 10.391J Sustainable Energy (MIT)

Description

This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the

Subjects

Assessment of energy systems | Assessment of energy systems | resources | resources | extraction | extraction | conversion | conversion | and end-use | and end-use | regional and global energy needs | regional and global energy needs | 21st century | 21st century | sustainable manner | sustainable manner | renewable and conventional energy technologies | renewable and conventional energy technologies | biomass energy | biomass energy | fossil fuels | fossil fuels | geothermal energy | geothermal energy | nuclear power | nuclear power | wind power | wind power | solar energy | solar energy | hydrogen fuel | hydrogen fuel | fusion energy | fusion energy | analysis of energy technology systems | analysis of energy technology systems | political | political | social | social | economic | economic | environment | environment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.21 The Physics of Energy (MIT) 8.21 The Physics of Energy (MIT)

Description

This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy. This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.

Subjects

energy | energy | solar energy | solar energy | wind energy | wind energy | nuclear energy | nuclear energy | biological energy sources | biological energy sources | thermal energy | thermal energy | eothermal power | eothermal power | ocean thermal energy conversion | ocean thermal energy conversion | hydro power | hydro power | climate change | climate change | energy storage | energy storage | energy conservation | energy conservation | nuclear radiation | nuclear radiation | solar photovoltaic | solar photovoltaic | OTEC | OTEC | nuclear reactor | nuclear reactor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.812J Managing Nuclear Technology (MIT) 22.812J Managing Nuclear Technology (MIT)

Description

An examination of current economic and policy issues in the electric power industry, focusing on nuclear power and its fuel cycle. Introduces techniques for analyzing private and public policy alternatives, including discounted cash flow methods and other techniques in engineering economics. Application to specific problem areas, including nuclear waste management and weapons proliferation. Other topics include deregulation and restructuring in the electric power industry. An examination of current economic and policy issues in the electric power industry, focusing on nuclear power and its fuel cycle. Introduces techniques for analyzing private and public policy alternatives, including discounted cash flow methods and other techniques in engineering economics. Application to specific problem areas, including nuclear waste management and weapons proliferation. Other topics include deregulation and restructuring in the electric power industry.

Subjects

electric power industry | electric power industry | nuclear power | nuclear power | fuel cycle | fuel cycle | analyzing private and public policy alternatives | analyzing private and public policy alternatives | discounted cash flow methods | discounted cash flow methods | engineering economics | engineering economics | nuclear waste management | nuclear waste management | weapons proliferation | weapons proliferation | deregulation | deregulation | restructuring | restructuring | 22.812 | 22.812 | ESD.163 | ESD.163

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata