Searching for precision : 53 results found | RSS Feed for this search

1 2

2.76 Multi-Scale System Design (MIT) 2.76 Multi-Scale System Design (MIT)

Description

Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials

Subjects

scale | scale | complexity | complexity | nano | micro | meso | or macro-scale | nano | micro | meso | or macro-scale | kinematics | kinematics | metrology | metrology | engineering modeling | motion | engineering modeling | motion | modeling | modeling | design | design | manufacture | manufacture | design principles | design principles | fabrication process | fabrication process | functional requirements | functional requirements | precision instruments | precision instruments | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | piezoelectric | transducer | actuator | sensor | piezoelectric | transducer | actuator | sensor | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constaint-based design | constaint-based design | carbon nanotube | carbon nanotube | nanowire | nanowire | scanning tunneling microscope | scanning tunneling microscope | flexure | flexure | protein structure | protein structure | polymer structure | polymer structure | nanopelleting | nanopipette | nanowire | nanopelleting | nanopipette | nanowire | TMA pixel array | TMA pixel array | error modeling | error modeling | repeatability | repeatability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.717J Optical Engineering (MIT) 2.717J Optical Engineering (MIT)

Description

This course concerns the theory and practice of optical methods in engineering and system design, with an emphasis on diffraction, statistical optics, holography, and imaging. It provides the engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included. This course concerns the theory and practice of optical methods in engineering and system design, with an emphasis on diffraction, statistical optics, holography, and imaging. It provides the engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included.

Subjects

optical methods in engineering and system design | optical methods in engineering and system design | diffraction | statistical optics | holography | and imaging | diffraction | statistical optics | holography | and imaging | Statistical Optics | Inverse Problems (i.e. theory of imaging) | Statistical Optics | Inverse Problems (i.e. theory of imaging) | applications in precision engineering and metrology | bio-imaging | and computing (sensors | data storage | communication in multi-processor systems) | applications in precision engineering and metrology | bio-imaging | and computing (sensors | data storage | communication in multi-processor systems) | Fourier optics | Fourier optics | probability | probability | stochastic processes | stochastic processes | light statistics | light statistics | theory of light coherence | theory of light coherence | van Cittert-Zernicke Theorem | van Cittert-Zernicke Theorem | statistical optics applications | statistical optics applications | inverse problems | inverse problems | information-theoretic views | information-theoretic views | information theory | information theory | 2.717 | 2.717 | MAS.857 | MAS.857

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.540 Principles of the Global Positioning System (MIT) 12.540 Principles of the Global Positioning System (MIT)

Description

The aim of this course is to introduce the principles of the Global Positioning System and to demonstrate its application to various aspects of Earth Sciences. The specific content of the course depends each year on the interests of the students in the class. In some cases, the class interests are towards the geophysical applications of GPS and we concentrate on high precision(millimeter level) positioning on regional and global scales. In other cases, the interests have been more toward engineering applications of kinematic positioning with GPS in which case the concentration is on positioning with slightly less accuracy but being able to do so for a moving object. In all cases, we concentrate on the fundamen The aim of this course is to introduce the principles of the Global Positioning System and to demonstrate its application to various aspects of Earth Sciences. The specific content of the course depends each year on the interests of the students in the class. In some cases, the class interests are towards the geophysical applications of GPS and we concentrate on high precision(millimeter level) positioning on regional and global scales. In other cases, the interests have been more toward engineering applications of kinematic positioning with GPS in which case the concentration is on positioning with slightly less accuracy but being able to do so for a moving object. In all cases, we concentrate on the fundamen

Subjects

Global Positioning System | Global Positioning System | Earth Sciences | Earth Sciences | geophysical applications | geophysical applications | GPS | GPS | engineering applications | engineering applications | kinematic positioning | kinematic positioning | precision | precision | accuracy | accuracy | moving objects | moving objects | coordinate | coordinate | time | time | systems | systems | satellite | satellite | geodetic | geodetic | orbital | orbital | motions | motions | pseudo ranges | pseudo ranges | carrier phases | carrier phases | stochastic | stochastic | mathematics | mathematics | models | models | data | data | analysis | analysis | estimation | estimation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.75 Precision Machine Design (MIT) 2.75 Precision Machine Design (MIT)

Description

Intensive coverage of precision engineering theory, heuristics, and applications pertaining to the design of systems ranging from consumer products to machine tools. Topics covered include: economics, project management, and design philosophy; principles of accuracy, repeatability, and resolution; error budgeting; sensors; sensor mounting; systems design; bearings; actuators and transmissions; system integration driven by functional requirements, and operating physics. Emphasis on developing creative designs, which are optimized by analytical techniques applied via spreadsheets. This is a projects course with lectures consisting of design teams presenting their work and the class helping to develop solutions; thereby everyone learning from everyone's projects. Intensive coverage of precision engineering theory, heuristics, and applications pertaining to the design of systems ranging from consumer products to machine tools. Topics covered include: economics, project management, and design philosophy; principles of accuracy, repeatability, and resolution; error budgeting; sensors; sensor mounting; systems design; bearings; actuators and transmissions; system integration driven by functional requirements, and operating physics. Emphasis on developing creative designs, which are optimized by analytical techniques applied via spreadsheets. This is a projects course with lectures consisting of design teams presenting their work and the class helping to develop solutions; thereby everyone learning from everyone's projects.

Subjects

precision engineering theory | precision engineering theory | heuristics | heuristics | systems design | systems design | economics | economics | project management | project management | design philosophy | design philosophy | error budgeting | error budgeting | bearings | bearings | actuators | actuators | transmissions | transmissions | system integration | system integration | functional requirements | functional requirements | operating physics | operating physics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Working on a propeller at Readhead's shipyard Working on a propeller at Readhead's shipyard

Description

Subjects

roof | roof | shadow | shadow | sky | sky | abstract | abstract | building | building | industry | industry | window | window | glass | glass | hat | hat | wall | wall | standing | standing | daylight | daylight | workers | workers | cabin | cabin | industrial | industrial | unitedkingdom | unitedkingdom | crane | crane | timber | timber | name | name | coat | coat | debris | debris | platform | platform | engineering | engineering | rail | rail | ground | ground | vessel | vessel | motto | motto | rope | rope | structure | structure | pole | pole | cranes | cranes | deck | deck | letter | letter | trousers | trousers | precision | precision | 1960s | 1960s | unusual | unusual | shipyard | shipyard | kneeling | kneeling | propeller | propeller | southshields | southshields | partnership | partnership | attentive | attentive | impressive | impressive | shaft | shaft | fascinating | fascinating | digitalimage | digitalimage | fitting | fitting | 1865 | 1865 | shipbuilding | shipbuilding | northeastengland | northeastengland | maritimeheritage | maritimeheritage | colourphotograph | colourphotograph | sirjamesknott | sirjamesknott | may1963 | may1963 | johnreadhead | johnreadhead | stricklineltd | stricklineltd | princeline | princeline | britishshipbuilders | britishshipbuilders | hainsteamshipcompanyltd | hainsteamshipcompanyltd | johnreadheadsonsltd | johnreadheadsonsltd | highwestyard | highwestyard | johnreadheadsonssouthshields | johnreadheadsonssouthshields | jsoftley | jsoftley | swanhuntergroup | swanhuntergroup | johnreadheadco | johnreadheadco

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 3402: Forging Process

Description

This lecture helps to understand the basic principles of die forging and the characteristic features of special aluminium die forging processes. It aims at learning about the basic design of dies in order to obtain optimum part qualities and tool life. General understanding of metallurgy and deformation processes is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | machining | forming | forging | fabricating | changing cross-sections | changing direction | hollow spaces | separating | die forging | open-die forging | precision forging | high precision forging | closed die forging without flash | isothermal forging | forging dies | parting of forging dies | die inserts | damaging | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.811 Particle Physics II (MIT) 8.811 Particle Physics II (MIT)

Description

8.811, Particle Physics II, describes essential research in High Energy Physics. We derive the Standard Model (SM) first using a bottom up method based on Unitarity, in addition to the usual top down method using SU3xSU2xU1. We describe and analyze several classical experiments, which established the SM, as examples on how to design experiments. Further topics include heavy flavor physics, high-precision tests of the Standard Model, neutrino oscillations, searches for new phenomena (compositeness, supersymmetry, technical color, and GUTs), and discussion of expectations from future accelerators (B factory, LHC, large electron-positron linear colliders, etc). The term paper requires the students to have constant discussions with the instructor throughout the semester on theories, physics, m 8.811, Particle Physics II, describes essential research in High Energy Physics. We derive the Standard Model (SM) first using a bottom up method based on Unitarity, in addition to the usual top down method using SU3xSU2xU1. We describe and analyze several classical experiments, which established the SM, as examples on how to design experiments. Further topics include heavy flavor physics, high-precision tests of the Standard Model, neutrino oscillations, searches for new phenomena (compositeness, supersymmetry, technical color, and GUTs), and discussion of expectations from future accelerators (B factory, LHC, large electron-positron linear colliders, etc). The term paper requires the students to have constant discussions with the instructor throughout the semester on theories, physics, m

Subjects

electron-positron and proton-antiproton collisions | electron-positron and proton-antiproton collisions | electroweak phenomena | electroweak phenomena | heavy flavor physics | and high-precision tests of the Standard Model | heavy flavor physics | and high-precision tests of the Standard Model | compositeness | supersymmetry | and GUTs | compositeness | supersymmetry | and GUTs | Top Quark | and expectations from future accelerators (B factory | LHC) | Top Quark | and expectations from future accelerators (B factory | LHC)

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)

Description

This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and pola This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and pola

Subjects

Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | number states | coherent states | coherent states | and squeezed states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | heterodyne detection | heterodyne detection | and homodyne detection. Second-order nonlinear optics: phasematched interactions | and homodyne detection. Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | generation of squeezed states | photon-twin beams | photon-twin beams | non-classical fourth-order interference | non-classical fourth-order interference | and polarization entanglement. Quantum systems theory: optimum binary detection | and polarization entanglement. Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | and quantum teleportation. | and quantum teleportation.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)

Description

This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following.  Quantum optics: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; radiation field quantization and quantum field propagation; P-representation and classical fields.  Linear loss and linear amplification: commutator preservation and the Uncertainty Principle; beam splitters; phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection, heterodyne detection, and homodyne detection.&a This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following.  Quantum optics: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; radiation field quantization and quantum field propagation; P-representation and classical fields.  Linear loss and linear amplification: commutator preservation and the Uncertainty Principle; beam splitters; phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection, heterodyne detection, and homodyne detection.&a

Subjects

Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | coherent states | and squeezed states | number states | coherent states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields | P-representation and classical fields | Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers | phase-insensitive and phase-sensitive amplifiers | Quantum photodetection: direct detection | heterodyne detection | and homodyne detection | Quantum photodetection: direct detection | heterodyne detection | and homodyne detection | Second-order nonlinear optics: phasematched interactions | Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | Quantum systems theory: optimum binary detection | Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | quantum teleportation | quantum teleportation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)

Description

This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and pola This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and pola

Subjects

Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | number states | coherent states | coherent states | and squeezed states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | heterodyne detection | heterodyne detection | and homodyne detection. Second-order nonlinear optics: phasematched interactions | and homodyne detection. Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | generation of squeezed states | photon-twin beams | photon-twin beams | non-classical fourth-order interference | non-classical fourth-order interference | and polarization entanglement. Quantum systems theory: optimum binary detection | and polarization entanglement. Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | and quantum teleportation. | and quantum teleportation.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Manoeuvring prefabricated sections at Readhead's shipyard Manoeuvring prefabricated sections at Readhead's shipyard

Description

Subjects

roof | roof | sky | sky | cloud | cloud | abstract | abstract | blur | blur | building | building | industry | industry | water | water | wall | wall | stairs | stairs | daylight | daylight | interesting | interesting | workers | workers | construction | construction | stair | stair | industrial | industrial | ship | ship | angle | angle | hole | hole | crane | crane | timber | timber | mark | mark | debris | debris | grain | grain | shapes | shapes | structures | structures | machine | machine | bank | bank | ground | ground | vessel | vessel | structure | structure | hose | hose | cranes | cranes | chain | chain | maritime | maritime | land | land | vegetation | vegetation | precision | precision | opening | opening | ladder | ladder | unusual | unusual | hook | hook | shipyard | shipyard | shipping | shipping | southshields | southshields | tyneside | tyneside | development | development | partnership | partnership | impressive | impressive | fascinating | fascinating | digitalimage | digitalimage | blackandwhitephotography | blackandwhitephotography | 1865 | 1865 | bulkcarrier | bulkcarrier | rivertyne | rivertyne | shipbuilding | shipbuilding | industrialheritage | industrialheritage | southtyneside | southtyneside | northeastengland | northeastengland | manoeuvring | manoeuvring | prefabricated | prefabricated | blackandwhitephotograph | blackandwhitephotograph | lawe | lawe | maritimeheritage | maritimeheritage | prefabrication | prefabrication | november1964 | november1964 | prefabricatedsections | prefabricatedsections | johnreadhead | johnreadhead | shellplating | shellplating | doublebottoms | doublebottoms | johnreadheadsonsltd | johnreadheadsonsltd | hudsonlight | hudsonlight | johnreadheadsonssouthshields | johnreadheadsonssouthshields | jsoftley | jsoftley | readheadsshipyard | readheadsshipyard

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.811 Particle Physics II (MIT) 8.811 Particle Physics II (MIT)

Description

8.811, Particle Physics II, describes essential research in High Energy Physics. We derive the Standard Model (SM) first using a bottom up method based on Unitarity, in addition to the usual top down method using SU3xSU2xU1. We describe and analyze several classical experiments, which established the SM, as examples on how to design experiments.  Further topics include heavy flavor physics, high-precision tests of the Standard Model, neutrino oscillations, searches for new phenomena (compositeness, supersymmetry, technical color, and GUTs), and discussion of expectations from future accelerators (B factory, LHC, large electron-positron linear colliders, etc). The term paper requires the students to have constant discussions with the instructor throughout the semester on theories, 8.811, Particle Physics II, describes essential research in High Energy Physics. We derive the Standard Model (SM) first using a bottom up method based on Unitarity, in addition to the usual top down method using SU3xSU2xU1. We describe and analyze several classical experiments, which established the SM, as examples on how to design experiments.  Further topics include heavy flavor physics, high-precision tests of the Standard Model, neutrino oscillations, searches for new phenomena (compositeness, supersymmetry, technical color, and GUTs), and discussion of expectations from future accelerators (B factory, LHC, large electron-positron linear colliders, etc). The term paper requires the students to have constant discussions with the instructor throughout the semester on theories,

Subjects

electron-positron and proton-antiproton collisions | electron-positron and proton-antiproton collisions | electroweak phenomena | electroweak phenomena | heavy flavor physics | and high-precision tests of the Standard Model | heavy flavor physics | and high-precision tests of the Standard Model | compositeness | supersymmetry | and GUTs | compositeness | supersymmetry | and GUTs | Top Quark | and expectations from future accelerators (B factory | LHC) | Top Quark | and expectations from future accelerators (B factory | LHC)

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Java Preparation for 6.170 (MIT) 6.092 Java Preparation for 6.170 (MIT)

Description

This course focuses on introducing the language, libraries, tools and concepts of JavaTM. The course is specifically targeted at students who intend to take 6.170 in the following term and feel they would struggle because they lack the necessary background. Topics include: Object-oriented programming, primitives, arrays, objects, inheritance, interfaces, polymorphism, hashing, data structures, collections, nested classes, floating point precision, defensive programming, and depth-first search algorithm. This course focuses on introducing the language, libraries, tools and concepts of JavaTM. The course is specifically targeted at students who intend to take 6.170 in the following term and feel they would struggle because they lack the necessary background. Topics include: Object-oriented programming, primitives, arrays, objects, inheritance, interfaces, polymorphism, hashing, data structures, collections, nested classes, floating point precision, defensive programming, and depth-first search algorithm.

Subjects

Object oriented programming | Object oriented programming | Java program structure | Java program structure | class file | main | methods | fields | class file | main | methods | fields | Primitives | Primitives | Control flow | method calls | if/then | for loop | while loop | Control flow | method calls | if/then | for loop | while loop | Arrays | Arrays | Objects | declaration | assignment | mutation | scope | Objects | declaration | assignment | mutation | scope | Classes vs Objects/Instances | Classes vs Objects/Instances | Method Overloading | Method Overloading | Inheritence | Inheritence | Abstract superclasses | Abstract superclasses | Interfaces | Interfaces | Polymorphism | Polymorphism | Method Overriding | Method Overriding | Hashing | Hashing | Data structures | Data structures | Collections | Collections | Advanced control flow | Advanced control flow | Writing interfaces | abstract classes | Writing interfaces | abstract classes | True subtyping | composite | True subtyping | composite | Throwing and catching exceptions | Throwing and catching exceptions | Nested classes | Nested classes | Floating point precision | Floating point precision | Defensive programming | Defensive programming | Depth First Search alogithm | Depth First Search alogithm

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.977 Ultrafast Optics (MIT) 6.977 Ultrafast Optics (MIT)

Description

This course is offered to graduate students and addresses issues regarding ultrafast optics. Topics covered include: Generation, propagation and applications of ultrashort pulses (nano-, pico-, femto-, attosecond pulses); Linear and nonlinear pulse shaping processes: Optical solitons, Pulse compression; Laser principles: Single- and multi-mode laser dynamics, Q-switching, Active and passive mode-locking; Pulse characterization: Autocorrelation, FROG, SPIDER; Noise in mode-locked lasers and its limitations in measurements; Laser amplifiers, optical parametric amplifiers, and oscillators; Applications in research and industry: Pump-probe techniques, Optical imaging, Frequency metrology, Laser ablation, High harmonic generation. This course is offered to graduate students and addresses issues regarding ultrafast optics. Topics covered include: Generation, propagation and applications of ultrashort pulses (nano-, pico-, femto-, attosecond pulses); Linear and nonlinear pulse shaping processes: Optical solitons, Pulse compression; Laser principles: Single- and multi-mode laser dynamics, Q-switching, Active and passive mode-locking; Pulse characterization: Autocorrelation, FROG, SPIDER; Noise in mode-locked lasers and its limitations in measurements; Laser amplifiers, optical parametric amplifiers, and oscillators; Applications in research and industry: Pump-probe techniques, Optical imaging, Frequency metrology, Laser ablation, High harmonic generation.

Subjects

ultrafast optics | ultrafast optics | generation | generation | propagation | propagation | ultrashort pulses | ultrashort pulses | nanopulses | nanopulses | picopulses | picopulses | femtopulses | femtopulses | attosecond pulses | attosecond pulses | linear | linear | non-linear | non-linear | effects | effects | high precision | high precision | measurements | measurements | nonlinear optics | nonlinear optics | optical signal processing | optical signal processing | optical communications | optical communications | x-ray generation | x-ray generation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 3402: Forging Process

Description

This lecture helps to understand the basic principles of die forging and the characteristic features of special aluminium die forging processes. It aims at learning about the basic design of dies in order to obtain optimum part qualities and tool life. General understanding of metallurgy and deformation processes is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | machining | forming | forging | fabricating | changing cross-sections | changing direction | hollow spaces | separating | die forging | open-die forging | precision forging | high precision forging | closed die forging without flash | isothermal forging | forging dies | parting of forging dies | die inserts | damaging | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.72 Elements of Mechanical Design (MIT) 2.72 Elements of Mechanical Design (MIT)

Description

This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliv This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliv

Subjects

biology | biology | chemistry | chemistry | synthetic biology | synthetic biology | project | project | biotech | biotech | genetic engineering | genetic engineering | GMO | GMO | ethics | ethics | biomedical ethics | biomedical ethics | genetics | genetics | recombinant DNA | recombinant DNA | DNA | DNA | gene sequencing | gene sequencing | gene synthesis | gene synthesis | biohacking | biohacking | computational biology | computational biology | iGEM | iGEM | BioBrick | BioBrick | systems biology | systems biology | machine design | machine design | hardware | hardware | machine element | machine element | design process | design process | design layout | design layout | prototype | prototype | mechanism | mechanism | engineering | engineering | fabrication | fabrication | lathe | lathe | precision engineering | precision engineering | group project | group project | project management | project management | CAD | CAD | fatigue | fatigue | Gantt chart | Gantt chart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Turning flanges (1914 ? 18)

Description

These images belong to the Parsons? ?Women Labourers? photograph album, taken at Parsons? Works on Shields Road during the First World War. (TWAM ref: 2402) The factory was founded by engineer Charles Parsons, best known for his invention of the steam turbine. In 1914, with the outbreak of war, Parsons? daughter Rachel, one of the first three women to study engineering at Cambridge, replaced her brother on the board of directors, and took on a role in the training department of the Ministry of Munitions, supporting the increasing amount of women taking on jobs in industry to support the war effort. More information about Rachel Parsons and Parsons? Works can be found in Great North Greats a guest post by David Wright. (copyright) We?re happy for you to share these digital images within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.uk

Subjects

ww1 | firstworldwar | war | worlife1915 | parsons | munitions | women | female | labourers | work | factory | heaton | newcastle | flanges | turning | 191418 | womenofthewar | worldwarone | wartime | blackandwhitephotograph | digitalimage | archives | industry | industrialheritage | parsons??womenlabourers? | womenlabourers | production | shieldsroad | worksonshieldsroad | charlesparsons | engineering | inventor | steamturbine | rachelparsons | ministryofmunitions | wareffort | worker | cog | wheel | wall | darkness | equipment | components | bolt | wire | bar | cloak | belt | fabric | crease | working | attentive | woman | hair | letters | identification | label | mark | timber | grain | blur | blouse | ribbon | shine | fascinating | interesting | unusual | compelling | northeastofengland | unitedkingdom | standing | precision | cambridge | workforce | economy

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.811 Particle Physics II (MIT)

Description

8.811, Particle Physics II, describes essential research in High Energy Physics. We derive the Standard Model (SM) first using a bottom up method based on Unitarity, in addition to the usual top down method using SU3xSU2xU1. We describe and analyze several classical experiments, which established the SM, as examples on how to design experiments.  Further topics include heavy flavor physics, high-precision tests of the Standard Model, neutrino oscillations, searches for new phenomena (compositeness, supersymmetry, technical color, and GUTs), and discussion of expectations from future accelerators (B factory, LHC, large electron-positron linear colliders, etc). The term paper requires the students to have constant discussions with the instructor throughout the semester on theories,

Subjects

electron-positron and proton-antiproton collisions | electroweak phenomena | heavy flavor physics | and high-precision tests of the Standard Model | compositeness | supersymmetry | and GUTs | Top Quark | and expectations from future accelerators (B factory | LHC)

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.72 Elements of Mechanical Design (MIT)

Description

This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliv

Subjects

biology | chemistry | synthetic biology | project | biotech | genetic engineering | GMO | ethics | biomedical ethics | genetics | recombinant DNA | DNA | gene sequencing | gene synthesis | biohacking | computational biology | iGEM | BioBrick | systems biology | machine design | hardware | machine element | design process | design layout | prototype | mechanism | engineering | fabrication | lathe | precision engineering | group project | project management | CAD | fatigue | Gantt chart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Insulating stator end windings (1914 ? 18)

Description

These images belong to the Parsons? ?Women Labourers? photograph album, taken at Parsons? Works on Shields Road during the First World War. (TWAM ref: 2402) The factory was founded by engineer Charles Parsons, best known for his invention of the steam turbine. In 1914, with the outbreak of war, Parsons? daughter Rachel, one of the first three women to study engineering at Cambridge, replaced her brother on the board of directors, and took on a role in the training department of the Ministry of Munitions, supporting the increasing amount of women taking on jobs in industry to support the war effort. More information about Rachel Parsons and Parsons? Works can be found in Great North Greats a guest post by David Wright. (copyright) We?re happy for you to share these digital images within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.uk

Subjects

ww1 | firstworldwar | war | worlife1915 | parsons | munitions | women | female | labourers | work | factory | heaton | newcastle | industry | woman | industrialheritage | womenofthewar | newcastleupontyne | northeastofengland | unitedkingdom | wartime | parsons??womenlabourers? | womenlabourers | parsons?worksonshieldsroad | engineer | charlesparsons | inventor | steamturbine | rachelparsons | engineering | cambridge | boardofdirectors | trainingdepartment | ministryofmunitions | wareffort | parsonsworks | cloth | fabric | crease | floor | wall | interior | room | working | attentive | standing | marks | grain | debris | components | insulating | statorendwindings | 191418 | cylinder | handle | bolt | workclothes | dirty | tool | number | letter | label | interesting | fascinating | unusual | blur | precision | engaging | archives | digitalimage

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Radiusing ends of slots in mirror ring (1914 ? 18)

Description

These images belong to the Parsons? ?Women Labourers? photograph album, taken at Parsons? Works on Shields Road during the First World War. (TWAM ref: 2402) The factory was founded by engineer Charles Parsons, best known for his invention of the steam turbine. In 1914, with the outbreak of war, Parsons? daughter Rachel, one of the first three women to study engineering at Cambridge, replaced her brother on the board of directors, and took on a role in the training department of the Ministry of Munitions, supporting the increasing amount of women taking on jobs in industry to support the war effort. More information about Rachel Parsons and Parsons? Works can be found in Great North Greats a guest post by David Wright. (copyright) We?re happy for you to share these digital images within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.uk

Subjects

ww1 | firstworldwar | war | worlife1915 | parsons | munitions | women | female | labourers | work | factory | heaton | newcastle | grain | blur | mark | outline | blackandwhitephotograph | digitalimage | womenofthewar | woman | labourer | working | attentive | standing | radiusingendsofslots | mirrorring | 191418 | archives | industry | industrialheritage | parsonsworks | shieldsroad | wartime | worldwarone | engineer | engineering | charlesparsons | inventor | steamturbine | rachelparsons | cambridge | boardofdirectors | trainingdepartment | ministryofmunitions | wareffort | greatnorthgreats | davidwright | chain | cog | components | shine | handle | precision | discolouration | wall | hat | clothing | crease | pocket | hand | finger | fascinating | interesting | unusual | engaging | northeastofengland | unitedkingdom | production | process | newcastleupontyne | hair | shoulder | equipment | belt

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Manoeuvring prefabricated sections at Readhead's shipyard

Description

View of prefabricated double bottoms being lowered into place on the shell plating of the bulk carrier ?Hudson Light? at the shipyard of John Readhead & Sons Ltd, South Shield, November 1964 (TWAM ref. DT.TUR/2/34872C). This set celebrates the achievements of the shipyard of John Readhead & Sons. The firm has played a significant role in the North East?s illustrious shipbuilding history and the development of South Shields. The company began in 1865 when John Readhead, a shipyard manager, entered into business with J Softley at a small yard on the Lawe at South Shields. Following the dissolution of the partnership in 1872, it continued as John Readhead & Co on the same site until 1880 when the High West Yard was purchased. After Readhead?s four sons were taken into the business in 1888 the company traded as John Readhead & Sons becoming a limited company in 1908. In 1968 the company was absorbed by the Swan Hunter Group and in 1977 became part of the nationalised British Shipbuilders. In the same year the last vessel was launched and the site was sold off in 1984. Readheads was prolific and built over 600 ships from 1865 to 1968, including 87 vessels for the Hain Steamship Company Ltd and over forty for the Strick Line Ltd. The shipyard also built four ships for the Prince Line, founded by Sir James Knott. The firm built vessels, which were involved in the major conflicts of the Twentieth Century. During the First World War they built patrol vessels and ?x? lighters (motor landing craft used in the Gallipoli campaign) for the Admiralty. During the Second World War the firm built tankers for the Normandy Landings. (Copyright) We're happy for you to share this digital image within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.uk.

Subjects

southshields | shipbuilding | johnreadheadsonsltd | shipyard | cranes | hudsonlight | construction | bulkcarrier | industry | industrial | shipping | maritime | southtyneside | prefabricated | prefabrication | doublebottoms | rivertyne | tyneside | northeastengland | workers | blackandwhitephotography | precision | angle | shapes | industrialheritage | maritimeheritage | abstract | johnreadheadsonssouthshields | crane | chain | building | stairs | wall | roof | stair | prefabricatedsections | manoeuvring | readheadsshipyard | bank | shellplating | vessel | ship | structure | structures | november1964 | development | 1865 | partnership | johnreadhead | jsoftley | lawe | fascinating | interesting | unusual | impressive | blackandwhitephotograph | digitalimage | sky | cloud | daylight | machine | ladder | timber | water | blur | grain | land | vegetation | hose | mark | hook | opening | hole | debris | ground

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.76 Multi-Scale System Design (MIT)

Description

Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials

Subjects

scale | complexity | nano | micro | meso | or macro-scale | kinematics | metrology | engineering modeling | motion | modeling | design | manufacture | design principles | fabrication process | functional requirements | precision instruments | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | piezoelectric | transducer | actuator | sensor | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constaint-based design | carbon nanotube | nanowire | scanning tunneling microscope | flexure | protein structure | polymer structure | nanopelleting | nanopipette | nanowire | TMA pixel array | error modeling | repeatability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Working on a propeller at Readhead's shipyard

Description

Workers fitting a propeller to its shaft at the shipyard of John Readhead & Sons Ltd, South Shields, May 1963 (TWAM ref. 1061/1197). This set celebrates the achievements of the shipyard of John Readhead & Sons. The firm has played a significant role in the North East?s illustrious shipbuilding history and the development of South Shields. The company began in 1865 when John Readhead, a shipyard manager, entered into business with J Softley at a small yard on the Lawe at South Shields. Following the dissolution of the partnership in 1872, it continued as John Readhead & Co on the same site until 1880 when the High West Yard was purchased. After Readhead?s four sons were taken into the business in 1888 the company traded as John Readhead & Sons becoming a limited company in 1908. In 1968 the company was absorbed by the Swan Hunter Group and in 1977 became part of the nationalised British Shipbuilders. In the same year the last vessel was launched and the site was sold off in 1984. Readheads was prolific and built over 600 ships from 1865 to 1968, including 87 vessels for the Hain Steamship Company Ltd and over forty for the Strick Line Ltd. The shipyard also built four ships for the Prince Line, founded by Sir James Knott. The firm built vessels, which were involved in the major conflicts of the Twentieth Century. During the First World War they built patrol vessels and ?x? lighters (motor landing craft used in the Gallipoli campaign) for the Admiralty. During the Second World War the firm built tankers for the Normandy Landings. (Copyright) We're happy for you to share this digital image within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.uk.

Subjects

southshields | shipbuilding | johnreadheadsonsltd | shipyard | cranes | propeller | engineering | workers | industry | industrial | colourphotograph | 1960s | digitalimage | maritimeheritage | abstract | shaft | fitting | sky | ground | daylight | shadow | may1963 | johnreadheadsonssouthshields | impressive | unusual | fascinating | northeastengland | unitedkingdom | structure | crane | cabin | window | glass | building | wall | roof | platform | timber | debris | rail | hat | coat | trousers | attentive | kneeling | standing | vessel | deck | pole | rope | motto | name | letter | precision | 1865 | johnreadhead | jsoftley | partnership | johnreadheadco | highwestyard | swanhuntergroup | britishshipbuilders | hainsteamshipcompanyltd | stricklineltd | princeline | sirjamesknott

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.717J Optical Engineering (MIT)

Description

This course concerns the theory and practice of optical methods in engineering and system design, with an emphasis on diffraction, statistical optics, holography, and imaging. It provides the engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included.

Subjects

optical methods in engineering and system design | diffraction | statistical optics | holography | and imaging | Statistical Optics | Inverse Problems (i.e. theory of imaging) | applications in precision engineering and metrology | bio-imaging | and computing (sensors | data storage | communication in multi-processor systems) | Fourier optics | probability | stochastic processes | light statistics | theory of light coherence | van Cittert-Zernicke Theorem | statistical optics applications | inverse problems | information-theoretic views | information theory | 2.717 | MAS.857

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata