Searching for process : 1604 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Readme file for Object-Oriented Software Design

Description

This readme file contains details of links to all the Object-Oriented Software Design module's material held on Jorum and information about the module as well.

Subjects

ukoer | class design | queues | linked lists | object-oriented software design process | object oriented design process | java notes | java practical | java reading material | object-oriented design process reading material | object-oriented software design process lecture | object-oriented software design process reading material | array lecture | linked list lecture | queue lecture | design reading material | class design reading material | class design lecture | case study | classes lecture | objects lecture | gui lecture | software design pattern lecture | inheritance reading material | polymorphism reading material | inheritance lecture | polymorphism | java object serialization reading material | data file lecture | java | review of java | introduction to java | arrays | object-oriented design process | testing | java classes | java objects | inheritance | abstract classes | gui | software design | java object serialization | object-oriented software design | java class | java object | class testing | introduction to java reading material | introduction to java practical | introduction to java lecture | review of java reading material | review of java practical | review of java lecture | java lecture | object-oriented design process practical | object-oriented design process lecture | object oriented design process reading material | object oriented design process practical | object oriented design process lecture | object-oriented software design process practical | object oriented software design process reading material | object oriented software design process practical | object oriented software design process lecture | arrays reading material | arrays practical | arrays lecture | linked lists reading material | linked lists practical | linked lists lecture | queues reading material | queues practical | queues lecture | class design practical | testing reading material | testing practical | testing lecture | java classes reading material | java classes practical | java classes lecture | java objects reading material | java objects practical | java objects lecture | inheritance practical | abstract classes reading material | abstract classes practical | abstract classes lecture | gui reading material | gui practical | software design reading material | software design practical | software design lecture | polymorphism practical | polymorphism lecture | java object serialization lecture | object-oriented software design reading material | object-oriented software design practical | object-oriented software design lecture | object oriented software design lecture | java class reading material | java class practical | java class lecture | java object reading material | java object lecture | class testing reading material | class testing practical | class testing lecture | java object practical | g400 | oosd | g400 reading material | g400 practical | g400 lecture | oosd reading material | oosd practical | oosd lecture | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.875 Applications of System Dynamics (MIT) 15.875 Applications of System Dynamics (MIT)

Description

15.875 is a project-based course that explores how organizations can use system dynamics to achieve important goals. In small groups, students learn modeling and consulting skills by working on a term-long project with real-life managers. A diverse set of businesses and organizations sponsor class projects, from start-ups to the Fortune 500. The course focuses on gaining practical insight from the system dynamics process, and appeals to people interested in system dynamics, consulting, or managerial policy-making. 15.875 is a project-based course that explores how organizations can use system dynamics to achieve important goals. In small groups, students learn modeling and consulting skills by working on a term-long project with real-life managers. A diverse set of businesses and organizations sponsor class projects, from start-ups to the Fortune 500. The course focuses on gaining practical insight from the system dynamics process, and appeals to people interested in system dynamics, consulting, or managerial policy-making.

Subjects

system dynamics process; modeling; business consulting; managerial policy-making; team project; standard method; process consultation; system consultation; system processes; modeling loops; analyzing loops; diffusion model; problem solving; reference modes; momentum policies; causal loop; client consultations; client consulting; molecules of structure; system dynamics models | system dynamics process; modeling; business consulting; managerial policy-making; team project; standard method; process consultation; system consultation; system processes; modeling loops; analyzing loops; diffusion model; problem solving; reference modes; momentum policies; causal loop; client consultations; client consulting; molecules of structure; system dynamics models | system dynamics process | system dynamics process | modeling | modeling | business consulting | business consulting | managerial policy-making | managerial policy-making | team project | team project | standard method | standard method | process consultation | process consultation | system consultation | system consultation | system processes | system processes | modeling loops | modeling loops | analyzing loops | analyzing loops | diffusion model | diffusion model | problem solving | problem solving | reference modes | reference modes | momentum policies | momentum policies | causal loop | causal loop | client consultations | client consultations | client consulting | client consulting | molecules of structure | molecules of structure | system dynamics models | system dynamics models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.163 Surface Processes and Landscape Evolution (MIT) 12.163 Surface Processes and Landscape Evolution (MIT)

Description

The course offers an introduction to quantitative analysis of geomorphic processes, and examines the interaction of climate, tectonics, and surface processes in the sculpting of Earth's surface. The course offers an introduction to quantitative analysis of geomorphic processes, and examines the interaction of climate, tectonics, and surface processes in the sculpting of Earth's surface.

Subjects

geomorphic processes | geomorphic processes | climate | climate | tectonics | tectonics | surface processes | surface processes | fluvial processes | fluvial processes | hillslope processes | hillslope processes | glacial processes | glacial processes | weathering | weathering | soil formation | soil formation | runoff | runoff | erosion | erosion | slope stability | slope stability | sediment transport | sediment transport | river morphology | river morphology | glacial erosion | glacial erosion | climatic forcings | climatic forcings | tectonic forcings | tectonic forcings | glaciation | glaciation | sea level change | sea level change | uplift | subsidence | uplift | subsidence | post-glacial isostatic rebound | post-glacial isostatic rebound | uplift | subsidence | uplift | subsidence

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.59J Psycholinguistics (MIT) 9.59J Psycholinguistics (MIT)

Description

Central topics in language processing. The structure of language. Sentence processing. Discourse processing. Morphological processing. The storage and access of words in the mental dictionary. Speech processing. The relationship between the computational resources available in working memory and the language processing mechanism. Ambiguity resolution. Discussion of computational modeling, including connectionist models. The relationship between language and thought. Issues in language acquisition including critical period phenomena, the acquisition of speech, and the acquisition of words. Experimental methodologies such as self-paced reading, eye-tracking, cross-modal priming, and neural imaging methods. Central topics in language processing. The structure of language. Sentence processing. Discourse processing. Morphological processing. The storage and access of words in the mental dictionary. Speech processing. The relationship between the computational resources available in working memory and the language processing mechanism. Ambiguity resolution. Discussion of computational modeling, including connectionist models. The relationship between language and thought. Issues in language acquisition including critical period phenomena, the acquisition of speech, and the acquisition of words. Experimental methodologies such as self-paced reading, eye-tracking, cross-modal priming, and neural imaging methods.

Subjects

language processing | language processing | Language | Language | Sentence processing | Sentence processing | Discourse processing | Discourse processing | Morphological processing | Morphological processing | storage | storage | access | access | Speech processing | Speech processing | computation | computation | Ambiguity | Ambiguity | connectionist models | connectionist models | thought | thought | acquisition | acquisition | critical period phenomena | critical period phenomena | acquisition of speech | acquisition of speech | word acquisition | word acquisition | eye-tracking | eye-tracking | cross-modal priming | cross-modal priming | neural imaging methods. | neural imaging methods. | 9.59 | 9.59 | 24.905 | 24.905

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.591J Language Processing (MIT) 9.591J Language Processing (MIT)

Description

This course is a seminar in real-time language comprehension. It considers models of sentence and discourse comprehension from the linguistic, psychology, and artificial intelligence literature, including symbolic and connectionist models. Topics include ambiguity resolution and linguistic complexity; the use of lexical, syntactic, semantic, pragmatic, contextual and prosodic information in language comprehension; the relationship between the computational resources available in working memory and the language processing mechanism; and the psychological reality of linguistic representations. This course is a seminar in real-time language comprehension. It considers models of sentence and discourse comprehension from the linguistic, psychology, and artificial intelligence literature, including symbolic and connectionist models. Topics include ambiguity resolution and linguistic complexity; the use of lexical, syntactic, semantic, pragmatic, contextual and prosodic information in language comprehension; the relationship between the computational resources available in working memory and the language processing mechanism; and the psychological reality of linguistic representations.

Subjects

language processing | language processing | language | language | Sentence processing | Sentence processing | Discourse processing | Discourse processing | Morphological processing | Morphological processing | storage | storage | access | access | Speech processing | Speech processing | computation | computation | Ambiguity | Ambiguity | connectionist models | connectionist models | thought | thought | acquisition | acquisition | critical period phenomena | critical period phenomena | acquisition of speech | acquisition of speech | word acquisition | word acquisition | eye-tracking | eye-tracking | cross-modal priming | cross-modal priming | neural imaging methods | neural imaging methods | 9.591 | 9.591 | 24.945 | 24.945

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.774 Physics of Microfabrication: Front End Processing (MIT) 6.774 Physics of Microfabrication: Front End Processing (MIT)

Description

Includes audio/video content: AV lectures. This course is offered to graduates and focuses on understanding the fundamental principles of the "front-end" processes used in the fabrication of devices for silicon integrated circuits. This includes advanced physical models and practical aspects of major processes, such as oxidation, diffusion, ion implantation, and epitaxy. Other topics covered include: high performance MOS and bipolar devices including ultra-thin gate oxides, implant-damage enhanced diffusion, advanced metrology, and new materials such as Silicon Germanium (SiGe). Includes audio/video content: AV lectures. This course is offered to graduates and focuses on understanding the fundamental principles of the "front-end" processes used in the fabrication of devices for silicon integrated circuits. This includes advanced physical models and practical aspects of major processes, such as oxidation, diffusion, ion implantation, and epitaxy. Other topics covered include: high performance MOS and bipolar devices including ultra-thin gate oxides, implant-damage enhanced diffusion, advanced metrology, and new materials such as Silicon Germanium (SiGe).

Subjects

fabrication processes | fabrication processes | silicon | silicon | integrated circuits | integrated circuits | monolithic integrated circuits | monolithic integrated circuits | physical models | physical models | bulk crystal growth | bulk crystal growth | thermal oxidation | thermal oxidation | solid-state diffusion | solid-state diffusion | ion implantation | ion implantation | epitaxial deposition | epitaxial deposition | chemical vapor deposition | chemical vapor deposition | physical vapor deposition | physical vapor deposition | refractory metal silicides | refractory metal silicides | plasma and reactive ion etching | plasma and reactive ion etching | rapid thermal processing | rapid thermal processing | process modeling | process modeling | process simulation | process simulation | technological limitations | technological limitations | integrated circuit design | integrated circuit design | integrated circuit fabrication | integrated circuit fabrication | device operation | device operation | sige materials | sige materials | processing | processing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.591J Language Processing (MIT) 9.591J Language Processing (MIT)

Description

This course is a seminar in real-time language comprehension. It considers models of sentence and discourse comprehension from the linguistic, psychology, and artificial intelligence literature, including symbolic and connectionist models. Topics include ambiguity resolution and linguistic complexity; the use of lexical, syntactic, semantic, pragmatic, contextual and prosodic information in language comprehension; the relationship between the computational resources available in working memory and the language processing mechanism; and the psychological reality of linguistic representations. This course is a seminar in real-time language comprehension. It considers models of sentence and discourse comprehension from the linguistic, psychology, and artificial intelligence literature, including symbolic and connectionist models. Topics include ambiguity resolution and linguistic complexity; the use of lexical, syntactic, semantic, pragmatic, contextual and prosodic information in language comprehension; the relationship between the computational resources available in working memory and the language processing mechanism; and the psychological reality of linguistic representations.

Subjects

language processing | language processing | language | language | Sentence processing | Sentence processing | Discourse processing | Discourse processing | Morphological processing | Morphological processing | storage | storage | access | access | Speech processing | Speech processing | computation | computation | Ambiguity | Ambiguity | connectionist models | connectionist models | thought | thought | acquisition | acquisition | critical period phenomena | critical period phenomena | acquisition of speech | acquisition of speech | word acquisition | word acquisition | eye-tracking | eye-tracking | cross-modal priming | cross-modal priming | neural imaging methods | neural imaging methods | 9.591 | 9.591 | 24.945 | 24.945

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.616 Innovative Businesses and Breakthrough Technologies - The Legal Issues (MIT) 15.616 Innovative Businesses and Breakthrough Technologies - The Legal Issues (MIT)

Description

15.616 is an introduction to business law which covers the fundamentals, including contracts, liability, regulation, employment, and corporations, with an in-depth treatment of the legal issues relating to breakthrough technologies, including the legal framework of R&D, the commercialization of new high-technology products in start-ups and mature companies, and the liability and regulatory implications of new products and innovative business models. There is extensive attention to national and international intellectual property protection and strategies. Examples are drawn from many industries, including information technology, communications, and life sciences. Note: This course used to be numbered 15.648. 15.616 is an introduction to business law which covers the fundamentals, including contracts, liability, regulation, employment, and corporations, with an in-depth treatment of the legal issues relating to breakthrough technologies, including the legal framework of R&D, the commercialization of new high-technology products in start-ups and mature companies, and the liability and regulatory implications of new products and innovative business models. There is extensive attention to national and international intellectual property protection and strategies. Examples are drawn from many industries, including information technology, communications, and life sciences. Note: This course used to be numbered 15.648.

Subjects

geomorphic processes | geomorphic processes | climate | climate | tectonics | tectonics | surface processes | surface processes | fluvial processes | fluvial processes | hillslope processes | hillslope processes | glacial processes | glacial processes | weathering | weathering | soil formation | soil formation | runoff | runoff | erosion | erosion | slope stability | slope stability | sediment transport | sediment transport | river morphology | river morphology | glacial erosion | glacial erosion | climatic forcings | climatic forcings | tectonic forcings | tectonic forcings | glaciation | glaciation | sea level change | sea level change | uplift | subsidence | uplift | subsidence | post-glacial isostatic rebound | post-glacial isostatic rebound | contracts | contracts | liability | liability | regulation | regulation | business law | business law | employment | employment | corporations | corporations | in-depth treatment of the legal issues relating to breakthrough technologies | in-depth treatment of the legal issues relating to breakthrough technologies | D | D | commercialization of new high-technology products | commercialization of new high-technology products | start-ups | start-ups | liability and regulatory implications of new products and innovative business models | liability and regulatory implications of new products and innovative business models | national and international intellectual property | national and international intellectual property | intellectual property | intellectual property | industries | industries | information technology | information technology | communications | communications | life sciences | life sciences

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.492-1 Integrated Chemical Engineering Topics I: Process Control by Design (MIT) 10.492-1 Integrated Chemical Engineering Topics I: Process Control by Design (MIT)

Description

In the ICE-Topics courses, various chemical engineering problems are presented and analyzed in an industrial context. Emphasis is on the integration of fundamentals with material property estimation, process control, product development, and computer simulation. Integration of societal issues, such as engineering ethics, environmental and safety considerations, and impact of technology on society are addressed in the context of case studies.The broad context for this ICE-Topics module is the commonsense notion that, when designing something, one should plan for the off-normal conditions that may occur. A continuous process is conceived and designed as a steady-state operation. However, the process must start up, shut down, and operate in the event of disturbances, and so the time-varying b In the ICE-Topics courses, various chemical engineering problems are presented and analyzed in an industrial context. Emphasis is on the integration of fundamentals with material property estimation, process control, product development, and computer simulation. Integration of societal issues, such as engineering ethics, environmental and safety considerations, and impact of technology on society are addressed in the context of case studies.The broad context for this ICE-Topics module is the commonsense notion that, when designing something, one should plan for the off-normal conditions that may occur. A continuous process is conceived and designed as a steady-state operation. However, the process must start up, shut down, and operate in the event of disturbances, and so the time-varying b

Subjects

process control | process control | heat exchanger network | heat exchanger network | design | design | shower process | shower process | continuous chemical processes | continuous chemical processes | dynamic simulation | dynamic simulation | implementation | implementation | controllers | controllers | feedback structure | feedback structure | material model | material model | energy balance model | energy balance model | linearizing equations | linearizing equations | Relative Gain Array | Relative Gain Array | Disturbance Cost | Disturbance Cost | proportional control algorithm | proportional control algorithm | steady-state model | steady-state model | numerical linearization | numerical linearization | matrix operations | matrix operations | variable pairing | variable pairing | process simulators | process simulators | design process | design process | offset phenomenon | offset phenomenon | RGA | RGA | DC | DC | heat recovery scheme | heat recovery scheme

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Biomolecular Kinetics and Cell Dynamics (MIT) 20.320 Biomolecular Kinetics and Cell Dynamics (MIT)

Description

This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling | cell population scale | cell population scale

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.823 Computer System Architecture (MIT) 6.823 Computer System Architecture (MIT)

Description

6.823 is a study of the evolution of computer architecture and the factors influencing the design of hardware and software elements of computer systems. Topics may include: instruction set design; processor micro-architecture and pipelining; cache and virtual memory organizations; protection and sharing; I/O and interrupts; in-order and out-of-order superscalar architectures; VLIW machines; vector supercomputers; multithreaded architectures; symmetric multiprocessors; and parallel computers. 6.823 is a study of the evolution of computer architecture and the factors influencing the design of hardware and software elements of computer systems. Topics may include: instruction set design; processor micro-architecture and pipelining; cache and virtual memory organizations; protection and sharing; I/O and interrupts; in-order and out-of-order superscalar architectures; VLIW machines; vector supercomputers; multithreaded architectures; symmetric multiprocessors; and parallel computers.

Subjects

computer architecture | | computer architecture | | computer system architecture | | computer system architecture | | hardware | | hardware | | hardware design | | hardware design | | software | | software | | software design | | software design | | instruction set design | | instruction set design | | processor micro-architecture | | processor micro-architecture | | pipelining | | pipelining | | cache memory | | cache memory | | irtual memory | | irtual memory | | I/O | | I/O | | input/output | | input/output | | interrupts | | interrupts | | superscalar architectures | | superscalar architectures | | VLIW machines | | VLIW machines | | vector supercomputers | | vector supercomputers | | multithreaded architectures | | multithreaded architectures | | symmetric multiprocessors | | symmetric multiprocessors | | parallel computers | parallel computers | computer architecture | computer architecture | computer system architecture | computer system architecture | hardware | hardware | hardware design | hardware design | software | software | software design | software design | instruction set design | instruction set design | processor micro-architecture | processor micro-architecture | pipelining | pipelining | cache memory | cache memory | virtual memory | virtual memory | I/O | I/O | input/output | input/output | interrupts | interrupts | superscalar architectures | superscalar architectures | VLIW machines | VLIW machines | vector supercomputers | vector supercomputers | multithreaded architectures | multithreaded architectures | symmetric multiprocessors | symmetric multiprocessors

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Readme file for Distributed Web Systems

Description

This readme file contains details of links to all the Distributed Web Systems module's material held on Jorum and information about the module as well.

Subjects

ukoer | web system tutorial | distributed system tutorial | web systems tutorial | distributed system lecture | web systems lecture | web system lecture | introduction to distributed systems lecture | interprocess communications | tomcat reading material | distributed systems architecture | interprocess communications lecture | distributed systems architecture quiz | web systems | distributed system | web system | servlets practical | distributed systems lecture | servlets tutorial | distributed systems quiz | java networking practical | distributed objects and remote method invocation lecture | distributed objects and rmi quiz | time and global state lecture | distributed systems architectures | distributed web systems | distributed web system | remote methods invocation practical | distributed systems | java servlet | transactions and currency control quiz | coordination and agreement lecture | coordination and agreement quiz | time control practical | replication lecture | java servlets | election algorithms practical | mvc approach practical | introduction to distributed web systems | distributed file systems lecture | cookies tutorial | session tracking tutorial | distributed objects lecture | web system quiz | distributed system quiz | web system practical | distributed web systems practical | distributed web system practical | distributed web system quiz | interprocess communication practical | distributed systems tutorial | distributed system practical | distributed web systems tutorial | distributed web systems lecture | distributed web systems quiz | distributed systems practical | java servlet practical | java servlets practical | interprocess communication quiz | distributed systems architectures quiz | distributed objects | distributed systems architecture lecture | distributed web system lecture | java servlet reading material | web system reading material | java servlets reading material | web systems reading material | distributed web systems reading material | distributed web system reading material | v | introduction to distributed web systems lecture | java servlets lecture | distributed web system tutorial | cookies and session tracking tutorial | distributed object lecture | distributed objects and remote method invocation practical | remote method invocation lecture | web systems quiz | fundamental models in distributed systems quiz | interprocess communications practical | web systems practical | request data tutorial | response data tutorial | servlet tutorial | java servlets tutorial | fundamental models in distributed systems lecture | interprocess communications quiz | interprocess communication lecture | distributed systems architectures lecture | distributed system reading material | distributed systems reading material | java servlet lecture | distributed objects quiz | remote method invocation quiz | distributed objects and remote method invocation quiz | distributed object quiz | fundamental models in distributed systems practical | time and global states lecture | java server pages tutorial | java server page tutorial | jsp tutorial | time and global state quiz | time and global states quiz | remote method invocation practical | distributed objects practical | distributed object practical | transactions and currency control lecture | transaction lecture | concurrency lecture | concurrency control lecture | transaction quiz | concurrency quiz | concurrency control quiz | request data practical | response data practical | servlet practical | cookies practical | session tracking practical | cookies and session tracking practical | time and global state practical | time and global states practical | java server pages practical | java server page practical | jsp practical | java beans tutorial | replication quiz | p2p lecture | peer to peer systems lecture | peer to peer system lecture | model-view-controller architecture tutorial | p2p quiz | peer to peer systems quiz | peer to peer system quiz | coordination and agreement practical | java beans practical | name services lecture | name service lecture | name services quiz | name service quiz | model-view-controller architecture practical | web services lecture | semantic web lecture | web services quiz | semantic web quiz | web services practical | semantic web practical | distributed file systems quiz | interprocess communication | fundamental models in distributed systems | request data | response data | servlet | remote method invocation | distributed objects and remote method invocation | distributed object | cookies | session tracking | cookies and session tracking | time and global state | time and global states | java server pages | java server page | jsp | transactions and currency control | transaction | concurrency | concurrency control | coordination and agreement | replication | java beans | p2p | peer to peer systems | peer to peer system | model-view-controller architecture | name services | name service | web services | semantic web | distributed file systems | jdbc tutorial | java database connectivity tutorial | jdbc practical | java database connectivity practical | jdbc | java database connectivity | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.63 Laboratory in Cognitive Science (MIT) 9.63 Laboratory in Cognitive Science (MIT)

Description

Teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. Combines lectures and hands-on experimental exercises; requires an independent experimental project. Some experience in programming desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments; a fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports. Teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. Combines lectures and hands-on experimental exercises; requires an independent experimental project. Some experience in programming desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments; a fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.

Subjects

language processing | language processing | structure | structure | Sentence processing | Sentence processing | Discourse processing | Discourse processing | storage | storage | Morphological processing | Morphological processing | Ambiguity resolution | Ambiguity resolution | computational modeling | computational modeling | connectionist models | connectionist models | critical period | critical period | Speech acquisition | Speech acquisition | word acquisition | word acquisition | self-paced reading | self-paced reading | eye-tracking | eye-tracking | cross-modal priming | cross-modal priming | maging | maging | language acquisition | language acquisition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.63 Laboratory in Cognitive Science (MIT) 9.63 Laboratory in Cognitive Science (MIT)

Description

Teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. Combines lectures and hands-on experimental exercises; requires an independent experimental project. Some experience in programming desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments; a fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports. Teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. Combines lectures and hands-on experimental exercises; requires an independent experimental project. Some experience in programming desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments; a fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.

Subjects

language processing | language processing | structure | structure | Sentence processing | Sentence processing | Discourse processing | Discourse processing | storage | storage | Morphological processing | Morphological processing | Ambiguity resolution | Ambiguity resolution | computational modeling | computational modeling | connectionist models | connectionist models | critical period | critical period | Speech acquisition | Speech acquisition | word acquisition | word acquisition | self-paced reading | self-paced reading | eye-tracking | eye-tracking | cross-modal priming | cross-modal priming | maging | maging | language acquisition | language acquisition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Microelectronics Processing Technology (MIT) 6.152J Microelectronics Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology. This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | microelectronics | Microelectronics processing | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits | integrated circuits | vacuum | vacuum | chemical vapor deposition | chemical vapor deposition | CVD | CVD | oxidation | oxidation | diffusion | diffusion | implantation | implantation | lithography | lithography | soft lithography | soft lithography | etching | etching | sputtering | sputtering | evaporation | evaporation | interconnect | interconnect | metallization | metallization | crystal growth | crystal growth | reliability | reliability | fabrication | fabrication | processing | processing | photolithography | photolithography | physical vapor deposition | physical vapor deposition | MOS | MOS | MOS capacitor | MOS capacitor | microcantilever | microcantilever | microfluidic | microfluidic | 6.152 | 6.152 | 3.155 | 3.155

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.722J Brain Mechanisms for Hearing and Speech (MIT) HST.722J Brain Mechanisms for Hearing and Speech (MIT)

Description

An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds. An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds.

Subjects

HST.722 | HST.722 | 9.044 | 9.044 | separation operations | separation operations | recovery of products from biological processes | recovery of products from biological processes | membrane filtration | membrane filtration | chromatography | chromatography | centrifugation | centrifugation | cell disruption | cell disruption | extraction | extraction | process design | process design | downstream processing | downstream processing | biochemical product recovery | biochemical product recovery | modes of recovery and purification | modes of recovery and purification | biochemical engineering | biochemical engineering | hearing | hearing | speech | speech | auditory brainstem | auditory brainstem | auditory cortex | auditory cortex | auditory reflexes | auditory reflexes | descending systems | descending systems | human auditory system | human auditory system | speech motor control | speech motor control | auditory learning | auditory learning | cortical representation | cortical representation | dorsal cochlear nucleus | dorsal cochlear nucleus | neural coding | neural coding | thalamo-cortical organization | thalamo-cortical organization | thalamo-cortical processing | thalamo-cortical processing | audio-visual integration | audio-visual integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Analysis of Biomolecular and Cellular Systems (MIT) 20.320 Analysis of Biomolecular and Cellular Systems (MIT)

Description

This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

biological engineering | biological engineering | kinase | kinase | PyMOL | PyMOL | PyRosetta | PyRosetta | MATLAB | MATLAB | Michaelis-Menten | Michaelis-Menten | bioreactor | bioreactor | bromodomain | bromodomain | protein-ligand interactions | protein-ligand interactions | titration analysis | titration analysis | fractional separation | fractional separation | isothermal titration calorimetry | isothermal titration calorimetry | ITC | ITC | mass spectrometry | mass spectrometry | MS | MS | co-immunoprecipitation | co-immunoprecipitation | Co-IP | Co-IP | Forster resonance energy transfer | Forster resonance energy transfer | FRET | FRET | primary ligation assay | primary ligation assay | PLA | PLA | surface plasmon resonance | surface plasmon resonance | SPR | SPR | enzyme kinetics | enzyme kinetics | kinase engineering | kinase engineering | competitive inhibition | competitive inhibition | epidermal growth factor receptor | epidermal growth factor receptor | mitogen-activated protein kinase | mitogen-activated protein kinase | MAPK | MAPK | genome editing | genome editing | Imatinib | Imatinib | Gleevec | Gleevec | Glivec | Glivec | drug delivery | drug delivery | kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.780 Semiconductor Manufacturing (MIT) 6.780 Semiconductor Manufacturing (MIT)

Description

6.780 covers statistical modeling and the control of semiconductor fabrication processes and plants. Topics covered include: design of experiments, response surface modeling, and process optimization; defect and parametric yield modeling; process/device/circuit yield optimization; monitoring, diagnosis, and feedback control of equipment and processes; and analysis and scheduling of semiconductor manufacturing operations. 6.780 covers statistical modeling and the control of semiconductor fabrication processes and plants. Topics covered include: design of experiments, response surface modeling, and process optimization; defect and parametric yield modeling; process/device/circuit yield optimization; monitoring, diagnosis, and feedback control of equipment and processes; and analysis and scheduling of semiconductor manufacturing operations.

Subjects

Semiconductor manufacturing | Semiconductor manufacturing | statistics | statistics | distributions | distributions | estimation | estimation | hypothesis testing | hypothesis testing | statistical process control | statistical process control | control chart | control chart | control chart design | control chart design | design of experiments | design of experiments | empirical equipment | empirical equipment | process modeling | process modeling | experimental design | experimental design | yield models | yield models | spatial variation | spatial variation | spatial models | spatial models | design for manufacturability | design for manufacturability | equipment monitoring | equipment monitoring | equipment diagnosis | equipment diagnosis | equipment control | equipment control | run by run | run by run | multistage process control | multistage process control | scheduling | scheduling | planning | planning | factory modeling | factory modeling | factory infrastructure | factory infrastructure | environmental | environmental | health and safety | health and safety | computer integrated manufacturing | computer integrated manufacturing | factory operation | factory operation | factory design | factory design | advanced process control | advanced process control | yield learning | yield learning

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.637 Optical Signals, Devices, and Systems (MIT) 6.637 Optical Signals, Devices, and Systems (MIT)

Description

6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this 6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this

Subjects

optical | optical | optical signals | optical signals | optical devices | optical devices | transmission | transmission | detection | detection | storage | storage | processing | processing | display | display | electromagnetic waves | electromagnetic waves | diffraction | diffraction | holography | holography | lasers | lasers | LEDs | LEDs | spatial light modulation | spatial light modulation | display technologies | display technologies | optical waveguides | optical waveguides | fiberoptic communication | fiberoptic communication | thermal photodetector | thermal photodetector | quantum photodetector | quantum photodetector | optical storage media | optical storage media | disks | disks | 3-D holographic material | 3-D holographic material | coherent optical processor | coherent optical processor | incoherent optical processor | incoherent optical processor | Fourier optics | Fourier optics | acousto-optics | acousto-optics | optoelectronic neural networks | optoelectronic neural networks | optical interconnection device technologies | optical interconnection device technologies | image processing | image processing | pattern recognition | pattern recognition | radar systems | radar systems | adaptive optical systems | adaptive optical systems | 6.161 | 6.161

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.008 Design and Manufacturing II (MIT) 2.008 Design and Manufacturing II (MIT)

Description

Integration of design, engineering, and management disciplines and practices for analysis and design of manufacturing enterprises. Emphasis is on the physics and stochastic nature of manufacturing processes and systems, and their effects on quality, rate, cost, and flexibility. Topics include process physics and control, design for manufacturing, and manufacturing systems. Group project requires design and fabrication of parts using mass-production and assembly methods to produce a product in quantity. Integration of design, engineering, and management disciplines and practices for analysis and design of manufacturing enterprises. Emphasis is on the physics and stochastic nature of manufacturing processes and systems, and their effects on quality, rate, cost, and flexibility. Topics include process physics and control, design for manufacturing, and manufacturing systems. Group project requires design and fabrication of parts using mass-production and assembly methods to produce a product in quantity.

Subjects

manufacturing enterprises | manufacturing enterprises | physics | physics | stochastic nature of manufacturing processes | stochastic nature of manufacturing processes | quality | quality | rate | rate | cost | cost | flexibility | flexibility | process physics | process physics | process control | process control

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.042 Materials Project Laboratory (MIT) 3.042 Materials Project Laboratory (MIT)

Description

As its name implies, the 3.042 Materials Project Laboratory involves working with such operations as investment casting of metals, injection molding of polymers, and sintering of ceramics. After all the abstraction and theory in the lecture part of the DMSE curriculum, many students have found this hands-on experience with materials to be very fun stuff - several have said that 3.042/3.082 was their favorite DMSE subject. The lab is more than operating processing equipment, however. It is intended also to emulate professional practice in materials engineering project management, with aspects of design, analysis, teamwork, literature and patent searching, Web creation and oral presentation, and more. As its name implies, the 3.042 Materials Project Laboratory involves working with such operations as investment casting of metals, injection molding of polymers, and sintering of ceramics. After all the abstraction and theory in the lecture part of the DMSE curriculum, many students have found this hands-on experience with materials to be very fun stuff - several have said that 3.042/3.082 was their favorite DMSE subject. The lab is more than operating processing equipment, however. It is intended also to emulate professional practice in materials engineering project management, with aspects of design, analysis, teamwork, literature and patent searching, Web creation and oral presentation, and more.

Subjects

Student project teams design and fabricate a materials engineering prototype using processing technologies (injection molding | Student project teams design and fabricate a materials engineering prototype using processing technologies (injection molding | thermoforming | thermoforming | investment casting | investment casting | powder processing | powder processing | three-dimensional printing | three-dimensional printing | physical vapor deposition | physical vapor deposition | etc.) appropriate for the materials and device of interest. Goals include using MSE fundamentals in a practical application; understanding trade-offs between design | etc.) appropriate for the materials and device of interest. Goals include using MSE fundamentals in a practical application; understanding trade-offs between design | processing and performance; and fabrication of a deliverable prototype. Emphasis on teamwork | processing and performance; and fabrication of a deliverable prototype. Emphasis on teamwork | project management | project management | communications and computer skills | communications and computer skills | and hands-on work using student and MIT laboratory shops. Teams document their progress and final results by means of web pages and weekly oral presentations. Instruction and practice in oral communication provided. | and hands-on work using student and MIT laboratory shops. Teams document their progress and final results by means of web pages and weekly oral presentations. Instruction and practice in oral communication provided.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.761 Operations Management (MIT) 15.761 Operations Management (MIT)

Description

This course will introduce concepts and techniques for design, planning and control of manufacturing and service operations. The course provides basic definitions of operations management terms, tools and techniques for analyzing operations, and strategic context for making operational decisions. We present the material in five modules: Operations Analysis Coordination and Planning Quality Management Project Management Logistics and Supply Chain Management This course will introduce concepts and techniques for design, planning and control of manufacturing and service operations. The course provides basic definitions of operations management terms, tools and techniques for analyzing operations, and strategic context for making operational decisions. We present the material in five modules: Operations Analysis Coordination and Planning Quality Management Project Management Logistics and Supply Chain Management

Subjects

manufacturing | manufacturing | service | service | analyzing operations | analyzing operations | operational decisions | operational decisions | operations analysis | operations analysis | quality management | quality management | project management | project management | logistics | logistics | supply chain management | supply chain management | job shop operations | job shop operations | process matching | process matching | queuing | queuing | forecasting | forecasting | queueing | queueing | analysis | analysis | analyzing | analyzing | operations | operations | coordination | coordination | planning | planning | quality | quality | project | project | management | management | supply chain | supply chain | job shop | job shop | decisions | decisions | decision making | decision making | operational | operational | design | design | control | control | materials | materials | production | production | scheduling | scheduling | reengineering | reengineering | capacity | capacity | facilities | facilities | strategy | strategy | process | process | processes | processes | matching | matching | inventory | inventory | vendor | vendor | customer | customer

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.003 Signals and Systems (MIT) 6.003 Signals and Systems (MIT)

Description

This course covers fundamentals of signal and system analysis, with applications drawn from filtering, audio and image processing, communications, and automatic control. Topics include convolution, Fourier series and transforms, sampling and discrete-time processing of continuous-time signals, modulation, Laplace and Z-transforms, and feedback systems. This course covers fundamentals of signal and system analysis, with applications drawn from filtering, audio and image processing, communications, and automatic control. Topics include convolution, Fourier series and transforms, sampling and discrete-time processing of continuous-time signals, modulation, Laplace and Z-transforms, and feedback systems.

Subjects

signal and system analysis | signal and system analysis | filtering | filtering | audio | audio | audio processing | audio processing | image processing | image processing | communications | communications | automatic control | automatic control | convolution | convolution | Fourier series | Fourier series | fourier transforms | fourier transforms | sampling | sampling | discrete-time processing | discrete-time processing | modulation | modulation | Laplace transforms | Laplace transforms | Z-transforms | Z-transforms | feedback systems | feedback systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.60 Fundamentals of Advanced Energy Conversion (MIT) 2.60 Fundamentals of Advanced Energy Conversion (MIT)

Description

This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization

Subjects

Thermodynamics | Thermodynamics | chemistry | chemistry | flow | flow | transport processes | transport processes | energy systems | energy systems | energy conversion in thermomechanical | thermochemical | electrochemical | energy conversion in thermomechanical | thermochemical | electrochemical | and photoelectric processes | and photoelectric processes | power and transportation systems | power and transportation systems | efficiency | efficiency | environmental impact | environmental impact | performance | performance | fossil fuels | fossil fuels | hydrogen resources | hydrogen resources | nuclear resources | nuclear resources | renewable resources | renewable resources | fuel reforming | fuel reforming | hydrogen and synthetic fuel production | hydrogen and synthetic fuel production | fuel cells and batteries | fuel cells and batteries | combustion | combustion | hybrids | hybrids | catalysis | catalysis | supercritical and combined cycles | supercritical and combined cycles | photovoltaics | photovoltaics | energy storage and transmission | energy storage and transmission | Optimal source utilization | Optimal source utilization | fuel-life cycle analysis. | fuel-life cycle analysis. | thermochemical | electrochemical | and photoelectric processes | thermochemical | electrochemical | and photoelectric processes | 2.62 | 2.62 | 10.392 | 10.392 | 22.40 | 22.40

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.875 Applications of System Dynamics (MIT)

Description

15.875 is a project-based course that explores how organizations can use system dynamics to achieve important goals. In small groups, students learn modeling and consulting skills by working on a term-long project with real-life managers. A diverse set of businesses and organizations sponsor class projects, from start-ups to the Fortune 500. The course focuses on gaining practical insight from the system dynamics process, and appeals to people interested in system dynamics, consulting, or managerial policy-making.

Subjects

system dynamics process; modeling; business consulting; managerial policy-making; team project; standard method; process consultation; system consultation; system processes; modeling loops; analyzing loops; diffusion model; problem solving; reference modes; momentum policies; causal loop; client consultations; client consulting; molecules of structure; system dynamics models | system dynamics process | modeling | business consulting | managerial policy-making | team project | standard method | process consultation | system consultation | system processes | modeling loops | analyzing loops | diffusion model | problem solving | reference modes | momentum policies | causal loop | client consultations | client consulting | molecules of structure | system dynamics models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata