Searching for process analysis : 11 results found | RSS Feed for this search

2.854 Manufacturing Systems I (SMA 6304) (MIT) 2.854 Manufacturing Systems I (SMA 6304) (MIT)

Description

As the first in a sequence of four half-term courses, this course will provide the fundamental building blocks for conceptualizing, understanding and optimizing manufacturing systems and supply chains. These building blocks include process analysis, queuing theory, simulation, forecasting, inventory theory and linear programming. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 6304 (Manufacturing Systems I: Analytical Methods and Flow Models). As the first in a sequence of four half-term courses, this course will provide the fundamental building blocks for conceptualizing, understanding and optimizing manufacturing systems and supply chains. These building blocks include process analysis, queuing theory, simulation, forecasting, inventory theory and linear programming. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 6304 (Manufacturing Systems I: Analytical Methods and Flow Models).

Subjects

conceptualizing | conceptualizing | understanding and optimizing manufacturing systems and supply chains | understanding and optimizing manufacturing systems and supply chains | process analysis | process analysis | queueing theory | queueing theory | simulation | simulation | forecasting | forecasting | inventory theory | inventory theory | linear programming | linear programming | conceptualizing | understanding and optimizing manufacturing systems and supply chains | conceptualizing | understanding and optimizing manufacturing systems and supply chains | SMA 6304 | SMA 6304

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.853 Manufacturing Systems I: Analytical Methods and Flow Models (MIT) 2.853 Manufacturing Systems I: Analytical Methods and Flow Models (MIT)

Description

Provides ways to conceptualize and analyze manufacturing systems and supply chains in terms of material flow, information flow, capacities, and flow times. Fundamental building blocks: inventory and queuing models, forecasting and uncertainty, optimization, process analysis, linear systems and system dynamics. Factory planning: flow planning, bottleneck characterization, buffer and batch-size tactics, seasonal planning, dynamics and learning for various process flow topologies and for various market contexts.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free  Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark Provides ways to conceptualize and analyze manufacturing systems and supply chains in terms of material flow, information flow, capacities, and flow times. Fundamental building blocks: inventory and queuing models, forecasting and uncertainty, optimization, process analysis, linear systems and system dynamics. Factory planning: flow planning, bottleneck characterization, buffer and batch-size tactics, seasonal planning, dynamics and learning for various process flow topologies and for various market contexts.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free  Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark

Subjects

manufacturing systems | manufacturing systems | supply chains | supply chains | material flow | material flow | information flow | information flow | capacities | capacities | flow times | flow times | Fundamental building blocks | Fundamental building blocks | inventory | inventory | queuing models | queuing models | forecasting | forecasting | uncertainty | uncertainty | optimization | optimization | process analysis | process analysis | linear systems | linear systems | system dynamics | system dynamics | Factory planning | Factory planning | flow planning | flow planning | bottleneck characterization | bottleneck characterization | buffer | buffer | batch-size tactics | batch-size tactics | seasonal planning | seasonal planning | process flow topologies | process flow topologies | market contexts | market contexts

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.761 Introduction to Operations Management (MIT) 15.761 Introduction to Operations Management (MIT)

Description

This course provides students with concepts, techniques and tools to design, analyze, and improve core operational capabilities, and apply them to a broad range of application domains and industries. It emphasizes the effect of uncertainty in decision-making, as well as the interplay between high-level financial objectives and operational capabilities. Topics covered include production control, risk pooling, quality management, process design, and revenue management. Also included are case studies, guest lectures, and simulation games which demonstrate central concepts. This course provides students with concepts, techniques and tools to design, analyze, and improve core operational capabilities, and apply them to a broad range of application domains and industries. It emphasizes the effect of uncertainty in decision-making, as well as the interplay between high-level financial objectives and operational capabilities. Topics covered include production control, risk pooling, quality management, process design, and revenue management. Also included are case studies, guest lectures, and simulation games which demonstrate central concepts.

Subjects

process analysis | process analysis | capacity analysis | capacity analysis | innovation | innovation | inventory management | inventory management | production | production | supply chain design | supply chain design | sustainability | sustainability | operational risk | operational risk | quality management | quality management | revenue management | revenue management | pricing | pricing | queuing | queuing | process re-engineering | process re-engineering | Toyota | Toyota | Amazon | Amazon | CVS | CVS | McDonald's | McDonald's | Burger King | Burger King | Hewlett-Packard | Hewlett-Packard | Sport Obermeyer | Sport Obermeyer | Walmart | Walmart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.760A Operations Management (MIT) 15.760A Operations Management (MIT)

Description

Our objective in this course is to introduce you to concepts and techniques related to the design, planning, control, and improvement of manufacturing and service operations. The course begins with a holistic view of operations, where we stress the coordination of product development, process management, and supply chain management. As the course progresses, we will investigate various aspects of each of these three tiers of operations in detail. We will cover topics in the areas of process analysis, materials management, production scheduling, quality improvement, and product design. To pursue the course objective most effectively, you will have to: Study the assigned reading materials. Prepare and discuss cases, readings, and exercises in class. Prepare written analyses of cases. Our objective in this course is to introduce you to concepts and techniques related to the design, planning, control, and improvement of manufacturing and service operations. The course begins with a holistic view of operations, where we stress the coordination of product development, process management, and supply chain management. As the course progresses, we will investigate various aspects of each of these three tiers of operations in detail. We will cover topics in the areas of process analysis, materials management, production scheduling, quality improvement, and product design. To pursue the course objective most effectively, you will have to: Study the assigned reading materials. Prepare and discuss cases, readings, and exercises in class. Prepare written analyses of cases.

Subjects

manufacturing design | manufacturing design | planning | planning | control | control | service operations | service operations | product development | product development | process management | process management | supply chain | supply chain | process analysis | process analysis | materials management | materials management | production scheduling | production scheduling | quality improvement | quality improvement | product design | product design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4106: Quality Assurance and Process Control

Description

This lecture describes the basic methods of quality assurance and process control for mechanical fastening methods. General mechanical engineering background and familiarity with the subject matter covered in TALAT This lectures 4101- 4105 is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | quality assurance | direct process control | statistical process control | mechanical fastening process | characteristic deformation diagram | blind rivet | controlling process | limiting values | force-motion studies | clinching | local incision | cross-section | clinch joint | joint geometry | process analysis | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.760A Operations Management (MIT)

Description

Our objective in this course is to introduce you to concepts and techniques related to the design, planning, control, and improvement of manufacturing and service operations. The course begins with a holistic view of operations, where we stress the coordination of product development, process management, and supply chain management. As the course progresses, we will investigate various aspects of each of these three tiers of operations in detail. We will cover topics in the areas of process analysis, materials management, production scheduling, quality improvement, and product design. To pursue the course objective most effectively, you will have to: Study the assigned reading materials. Prepare and discuss cases, readings, and exercises in class. Prepare written analyses of cases.

Subjects

manufacturing design | planning | control | service operations | product development | process management | supply chain | process analysis | materials management | production scheduling | quality improvement | product design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4106: Quality Assurance and Process Control

Description

This lecture describes the basic methods of quality assurance and process control for mechanical fastening methods. General mechanical engineering background and familiarity with the subject matter covered in TALAT This lectures 4101- 4105 is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | quality assurance | direct process control | statistical process control | mechanical fastening process | characteristic deformation diagram | blind rivet | controlling process | limiting values | force-motion studies | clinching | local incision | cross-section | clinch joint | joint geometry | process analysis | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.854 Manufacturing Systems I (SMA 6304) (MIT)

Description

As the first in a sequence of four half-term courses, this course will provide the fundamental building blocks for conceptualizing, understanding and optimizing manufacturing systems and supply chains. These building blocks include process analysis, queuing theory, simulation, forecasting, inventory theory and linear programming. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 6304 (Manufacturing Systems I: Analytical Methods and Flow Models).

Subjects

conceptualizing | understanding and optimizing manufacturing systems and supply chains | process analysis | queueing theory | simulation | forecasting | inventory theory | linear programming | conceptualizing | understanding and optimizing manufacturing systems and supply chains | SMA 6304

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.853 Manufacturing Systems I: Analytical Methods and Flow Models (MIT)

Description

Provides ways to conceptualize and analyze manufacturing systems and supply chains in terms of material flow, information flow, capacities, and flow times. Fundamental building blocks: inventory and queuing models, forecasting and uncertainty, optimization, process analysis, linear systems and system dynamics. Factory planning: flow planning, bottleneck characterization, buffer and batch-size tactics, seasonal planning, dynamics and learning for various process flow topologies and for various market contexts.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free  Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark

Subjects

manufacturing systems | supply chains | material flow | information flow | capacities | flow times | Fundamental building blocks | inventory | queuing models | forecasting | uncertainty | optimization | process analysis | linear systems | system dynamics | Factory planning | flow planning | bottleneck characterization | buffer | batch-size tactics | seasonal planning | process flow topologies | market contexts

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.761 Introduction to Operations Management (MIT)

Description

This course provides students with concepts, techniques and tools to design, analyze, and improve core operational capabilities, and apply them to a broad range of application domains and industries. It emphasizes the effect of uncertainty in decision-making, as well as the interplay between high-level financial objectives and operational capabilities. Topics covered include production control, risk pooling, quality management, process design, and revenue management. Also included are case studies, guest lectures, and simulation games which demonstrate central concepts.

Subjects

process analysis | capacity analysis | innovation | inventory management | production | supply chain design | sustainability | operational risk | quality management | revenue management | pricing | queuing | process re-engineering | Toyota | Amazon | CVS | McDonald's | Burger King | Hewlett-Packard | Sport Obermeyer | Walmart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.760A Operations Management (MIT)

Description

Our objective in this course is to introduce you to concepts and techniques related to the design, planning, control, and improvement of manufacturing and service operations. The course begins with a holistic view of operations, where we stress the coordination of product development, process management, and supply chain management. As the course progresses, we will investigate various aspects of each of these three tiers of operations in detail. We will cover topics in the areas of process analysis, materials management, production scheduling, quality improvement, and product design. To pursue the course objective most effectively, you will have to: Study the assigned reading materials. Prepare and discuss cases, readings, and exercises in class. Prepare written analyses of cases.

Subjects

manufacturing design | planning | control | service operations | product development | process management | supply chain | process analysis | materials management | production scheduling | quality improvement | product design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata