Searching for proteomics : 27 results found | RSS Feed for this search

1

HST.950J Engineering Biomedical Information: From Bioinformatics to Biosurveillance (MIT) HST.950J Engineering Biomedical Information: From Bioinformatics to Biosurveillance (MIT)

Description

This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research. This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research.

Subjects

biomedical informatics | biomedical informatics | bioinformatics | bioinformatics | biomedical research | biomedical research | biological computing | biological computing | biomedical computing | biomedical computing | computational genomics | computational genomics | genomics | genomics | microarrays | microarrays | proteomics | proteomics | pharmacogenomics | pharmacogenomics | genomic privacy | genomic privacy | clinical informatics | clinical informatics | biosurveillance | biosurveillance | privacy | privacy | biotechnology | biotechnology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.453J Biomedical Information Technology (BE.453J) (MIT) 20.453J Biomedical Information Technology (BE.453J) (MIT)

Description

The objective of this subject is to teach the design of contemporary information systems for biological and medical data. These data are growing at a prodigious rate, and new information systems are required. This subject will cover examples from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures will be covered. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (C, C++, Java®, Lisp, Perl, Python, etc.). A major term project is The objective of this subject is to teach the design of contemporary information systems for biological and medical data. These data are growing at a prodigious rate, and new information systems are required. This subject will cover examples from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures will be covered. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (C, C++, Java®, Lisp, Perl, Python, etc.). A major term project is

Subjects

imaging | imaging | medical imaging | medical imaging | metadata | metadata | medical record | medical record | DICOM | DICOM | computer architecture | computer architecture | client-server architecture | client-server architecture | SEM | SEM | TEM | TEM | OME | OME | RDF | RDF | semantic web | semantic web | BioHaystack | BioHaystack | database | database | schema | schema | ExperiBase | ExperiBase | genomics | genomics | proteomics | proteomics | bioinformatics | bioinformatics | clinical decision support | clinical decision support | microarray | microarray | gel electrophoresis | gel electrophoresis | diagnosis | diagnosis | 20.453 | 20.453 | 2.771 | 2.771 | HST.958 | HST.958

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.453J Biomedical Information Technology (MIT) BE.453J Biomedical Information Technology (MIT)

Description

The objective of this subject is to teach the design of contemporary information systems for biological and medical data. These data are growing at a prodigious rate, and new information systems are required. This subject will cover examples from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures will be covered. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (C, C++, Java®, Lisp, Perl, Python, etc.). A major term project is The objective of this subject is to teach the design of contemporary information systems for biological and medical data. These data are growing at a prodigious rate, and new information systems are required. This subject will cover examples from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures will be covered. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (C, C++, Java®, Lisp, Perl, Python, etc.). A major term project is

Subjects

imaging | imaging | medical imaging | medical imaging | metadata | metadata | medical record | medical record | DICOM | DICOM | computer architecture | computer architecture | client-server architecture | client-server architecture | SEM | SEM | TEM | TEM | OME | OME | RDF | RDF | semantic web | semantic web | BioHaystack | BioHaystack | database | database | schema | schema | ExperiBase | ExperiBase | genomics | genomics | proteomics | proteomics | bioinformatics | bioinformatics | clinical decision support | clinical decision support | microarray | microarray | gel electrophoresis | gel electrophoresis | diagnosis | diagnosis | 2.771J | 2.771J | 2.771 | 2.771 | HST.958J | HST.958J | HST.958 | HST.958

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.047 Computational Biology: Genomes, Networks, Evolution (MIT) 6.047 Computational Biology: Genomes, Networks, Evolution (MIT)

Description

This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include: Genomes: biological sequence analysis, hidden Markov models, gene finding, RNA folding, sequence alignment, genome assembly Networks: gene expression analysis, regulatory motifs, graph algorithms, scale-free networks, network motifs, network evolution Evolution: comparative genomics, phylogenetics, genome duplication, genome rearrangements, evolutionary theory, rapid evolution This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include: Genomes: biological sequence analysis, hidden Markov models, gene finding, RNA folding, sequence alignment, genome assembly Networks: gene expression analysis, regulatory motifs, graph algorithms, scale-free networks, network motifs, network evolution Evolution: comparative genomics, phylogenetics, genome duplication, genome rearrangements, evolutionary theory, rapid evolution

Subjects

computational biology | computational biology | algorithms | algorithms | machine learning | machine learning | biology | biology | biological datasets | biological datasets | genomics | genomics | proteomics | proteomics | genomes | genomes | sequence analysis | sequence analysis | sequence alignment | sequence alignment | genome assembly | genome assembly | network motifs | network motifs | network evolution | network evolution | graph algorithms | graph algorithms | phylogenetics | phylogenetics | comparative genomics | comparative genomics | python | python | probability | probability | statistics | statistics | entropy | entropy | information | information

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Bioinformatics and Proteomics (MIT) 6.092 Bioinformatics and Proteomics (MIT)

Description

This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon. This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon.

Subjects

bioinformatics | bioinformatics | proteomics | proteomics | sequence analysis | sequence analysis | microarray expression analysis | microarray expression analysis | Bayesian methods | Bayesian methods | control theory | control theory | scale-free networks | scale-free networks | biotechnology applications | biotechnology applications | real-world examples | real-world examples | actual implementations | actual implementations | engineering design issues | engineering design issues | signal processing | signal processing | network theory | network theory | machine learning | machine learning | robotics | robotics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.453J Biomedical Information Technology (MIT) 20.453J Biomedical Information Technology (MIT)

Description

This course teaches the design of contemporary information systems for biological and medical data. Examples are chosen from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (e.g. C, C++, Java, Lisp, Perl, Python). A major term project is required of all students. This subject is open to motivated seniors having a strong interest in biomedical engineering and information system desig This course teaches the design of contemporary information systems for biological and medical data. Examples are chosen from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (e.g. C, C++, Java, Lisp, Perl, Python). A major term project is required of all students. This subject is open to motivated seniors having a strong interest in biomedical engineering and information system desig

Subjects

20.453 | 20.453 | 2.771 | 2.771 | HST.958 | HST.958 | imaging | imaging | medical imaging | medical imaging | metadata | metadata | molecular biology | molecular biology | medical records | medical records | DICOM | DICOM | RDF | RDF | OWL | OWL | SPARQL | SPARQL | SBML | SBML | CellML | CellML | semantic web | semantic web | BioHaystack | BioHaystack | database | database | schema | schema | ExperiBase | ExperiBase | genomics | genomics | proteomics | proteomics | bioinformatics | bioinformatics | computational biology | computational biology | clinical decision support | clinical decision support | clinical trial | clinical trial | microarray | microarray | gel electrophoresis | gel electrophoresis | diagnosis | diagnosis | pathway modeling | pathway modeling | XML | XML | SQL | SQL | relational database | relational database | biological data | biological data | ontologies | ontologies | drug development | drug development | drug discovery | drug discovery | drug target | drug target | pharmaceutical | pharmaceutical | gene sequencing | gene sequencing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.508 Quantitative Genomics (MIT) HST.508 Quantitative Genomics (MIT)

Description

This course provides a foundation in the following four areas: evolutionary and population genetics; comparative genomics; structural genomics and proteomics; and functional genomics and regulation. This course provides a foundation in the following four areas: evolutionary and population genetics; comparative genomics; structural genomics and proteomics; and functional genomics and regulation.

Subjects

genomics | genomics | quantitative genomics | quantitative genomics | comparative genomics | comparative genomics | genes | genes | genome | genome | SNPs | SNPs | haplotypes | haplotypes | sequence alignment | sequence alignment | protein structure | protein structure | protein folding | protein folding | proteomics | proteomics | structural genomics | structural genomics | functional genomics | functional genomics | networks | networks | systems biology | systems biology | biological networks | biological networks | RNA | RNA | DNA | DNA | gene expression | gene expression | evolutionary genetics | evolutionary genetics | population genetics | population genetics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.947 Medical Artificial Intelligence (MIT) HST.947 Medical Artificial Intelligence (MIT)

Description

This course provides an intensive introduction to artificial intelligence and its applications to problems of medical diagnosis, therapy selection, and monitoring and learning from databases. It meets with lectures and recitations of 6.034 Artificial Intelligence, whose material is supplemented by additional medical-specific readings in a weekly discussion session. Students are responsible for completing all homework assignments in 6.034 and for additional problems and/or papers. This course provides an intensive introduction to artificial intelligence and its applications to problems of medical diagnosis, therapy selection, and monitoring and learning from databases. It meets with lectures and recitations of 6.034 Artificial Intelligence, whose material is supplemented by additional medical-specific readings in a weekly discussion session. Students are responsible for completing all homework assignments in 6.034 and for additional problems and/or papers.

Subjects

Introduces representations | techniques | and architectures used to build applied systems | Introduces representations | techniques | and architectures used to build applied systems | computational intelligence | computational intelligence | rule chaining | rule chaining | heuristic search | heuristic search | constraint propagation | constraint propagation | constrained search | constrained search | inheritance | inheritance | problem-solving paradigms | problem-solving paradigms | identification trees | identification trees | neural nets | neural nets | genetic algorithms | genetic algorithms | learning paradigms | learning paradigms | Speculations on the contributions of human vision and language systems to human intelligence | Speculations on the contributions of human vision and language systems to human intelligence | Meets with HST.947 spring only | Meets with HST.947 spring only | 4 Engineering Design Points | 4 Engineering Design Points | artificial intelligence | artificial intelligence | applied systems | applied systems | human intelligence | human intelligence | knowledge representation | knowledge representation | intelligent systems | intelligent systems | diagnosis | diagnosis | clinical simulation | clinical simulation | genomics | genomics | proteomics | proteomics | bioinformatics | bioinformatics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Proteomics and Biomarkers

Description

Dr Benedikt Kessler tells us how proteomics helps find biomarkers. In most living organisms, the ubiquitin-proteasome system is responsible for the degradation of proteins, either because they're damaged or they reach the end of their life span. Ubiquitin marks a protein for elimination. Alterations in this process are responsible for many human diseases. Dr Benedikt Kessler studies the role of deubiquitylating enzymes that remove ubiquitin from substrate proteins. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

immunology | hiv | proteomics | Biomarkers | infectious diseases | ubiquitin | immunology | hiv | proteomics | Biomarkers | infectious diseases | ubiquitin

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Proteomics and Biomarkers

Description

Dr Benedikt Kessler tells us how proteomics helps find biomarkers. In most living organisms, the ubiquitin-proteasome system is responsible for the degradation of proteins, either because they're damaged or they reach the end of their life span. Ubiquitin marks a protein for elimination. Alterations in this process are responsible for many human diseases. Dr Benedikt Kessler studies the role of deubiquitylating enzymes that remove ubiquitin from substrate proteins. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

immunology | hiv | proteomics | Biomarkers | infectious diseases | ubiquitin | immunology | hiv | proteomics | Biomarkers | infectious diseases | ubiquitin

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.91J Foundations of Computational and Systems Biology (MIT) 7.91J Foundations of Computational and Systems Biology (MIT)

Description

This course is an introduction to computational biology emphasizing the fundamentals of nucleic acid and protein sequence and structural analysis; it also includes an introduction to the analysis of complex biological systems. Topics covered in the course include principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction and network modeling, as well as currently emerging research areas. This course is an introduction to computational biology emphasizing the fundamentals of nucleic acid and protein sequence and structural analysis; it also includes an introduction to the analysis of complex biological systems. Topics covered in the course include principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction and network modeling, as well as currently emerging research areas.

Subjects

7.91 | 7.91 | 20.490 | 20.490 | 20.390 | 20.390 | 7.36 | 7.36 | 6.802 | 6.802 | 6.874 | 6.874 | HST.506 | HST.506 | computational biology | computational biology | systems biology | systems biology | bioinformatics | bioinformatics | artificial intelligence | artificial intelligence | sequence analysis | sequence analysis | proteomics | proteomics | sequence alignment | sequence alignment | protein folding | protein folding | structure prediction | structure prediction | network modeling | network modeling | phylogenetics | phylogenetics | pairwise sequence comparisons | pairwise sequence comparisons | ncbi | ncbi | blast | blast | protein structure | protein structure | dynamic programming | dynamic programming | genome sequencing | genome sequencing | DNA | DNA | RNA | RNA | x-ray crystallography | x-ray crystallography | NMR | NMR | homologs | homologs | ab initio structure prediction | ab initio structure prediction | DNA microarrays | DNA microarrays | clustering | clustering | proteome | proteome | computational annotation | computational annotation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.91J Foundations of Computational and Systems Biology (MIT) 7.91J Foundations of Computational and Systems Biology (MIT)

Description

Serving as an introduction to computational biology, this course emphasizes the fundamentals of nucleic acid and protein sequence analysis, structural analysis, and the analysis of complex biological systems. The principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction, and network modeling are covered. Students are also exposed to currently emerging research areas in the fields of computational and systems biology. Serving as an introduction to computational biology, this course emphasizes the fundamentals of nucleic acid and protein sequence analysis, structural analysis, and the analysis of complex biological systems. The principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction, and network modeling are covered. Students are also exposed to currently emerging research areas in the fields of computational and systems biology.

Subjects

computational biology | computational biology | systems biology | systems biology | bioinformatics | bioinformatics | sequence analysis | sequence analysis | proteomics | proteomics | sequence alignment | sequence alignment | protein folding | protein folding | structure prediction | structure prediction | network modeling | network modeling | phylogenetics | phylogenetics | pairwise sequence comparisons | pairwise sequence comparisons | ncbi | ncbi | blast | blast | protein structure | protein structure | dynamic programming | dynamic programming | genome sequencing | genome sequencing | DNA | DNA | RNA | RNA | x-ray crystallography | x-ray crystallography | NMR | NMR | homologs | homologs | ab initio structure prediction | ab initio structure prediction | DNA microarrays | DNA microarrays | clustering | clustering | proteome | proteome | computational annotation | computational annotation | BE.490J | BE.490J | 7.91 | 7.91 | 7.36 | 7.36 | BE.490 | BE.490 | 20.490 | 20.490

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.047 Computational Biology (MIT) 6.047 Computational Biology (MIT)

Description

This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets. This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets.

Subjects

Genomes | Genomes | Networks | Networks | Evolution | Evolution | computational biology | computational biology | genomics | genomics | comparative genomics | comparative genomics | epigenomics | epigenomics | functional genomics | motifs | functional genomics | motifs | phylogenomics | phylogenomics | personal genomics | personal genomics | algorithms | algorithms | machine learning | machine learning | biology | biology | biological datasets | biological datasets | proteomics | proteomics | sequence analysis | sequence analysis | sequence alignment | sequence alignment | genome assembly | genome assembly | network motifs | network motifs | network evolution | network evolution | graph algorithms | graph algorithms | phylogenetics | phylogenetics | python | python | probability | probability | statistics | statistics | entropy | entropy | information | information

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.91J Foundations of Computational and Systems Biology (MIT)

Description

Serving as an introduction to computational biology, this course emphasizes the fundamentals of nucleic acid and protein sequence analysis, structural analysis, and the analysis of complex biological systems. The principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction, and network modeling are covered. Students are also exposed to currently emerging research areas in the fields of computational and systems biology.

Subjects

computational biology | systems biology | bioinformatics | sequence analysis | proteomics | sequence alignment | protein folding | structure prediction | network modeling | phylogenetics | pairwise sequence comparisons | ncbi | blast | protein structure | dynamic programming | genome sequencing | DNA | RNA | x-ray crystallography | NMR | homologs | ab initio structure prediction | DNA microarrays | clustering | proteome | computational annotation | BE.490J | 7.91 | 7.36 | BE.490 | 20.490

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-simulations.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.91J Foundations of Computational and Systems Biology (MIT)

Description

Serving as an introduction to computational biology, this course emphasizes the fundamentals of nucleic acid and protein sequence analysis, structural analysis, and the analysis of complex biological systems. The principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction, and network modeling are covered. Students are also exposed to currently emerging research areas in the fields of computational and systems biology.

Subjects

computational biology | systems biology | bioinformatics | sequence analysis | proteomics | sequence alignment | protein folding | structure prediction | network modeling | phylogenetics | pairwise sequence comparisons | ncbi | blast | protein structure | dynamic programming | genome sequencing | DNA | RNA | x-ray crystallography | NMR | homologs | ab initio structure prediction | DNA microarrays | clustering | proteome | computational annotation | BE.490J | 7.91 | 7.36 | BE.490 | 20.490

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Biotechnology

Description

This course will introduce the student to the major concepts of biotechnology. The student will discuss genetic engineering of plants and animals and the current major medical, environmental, and agricultural applications of each. There are also a variety of topics that this course will cover after ranging from nanobiotechnology to environmental biotechnology. This free course may be completed online at any time. See course site for detailed overview and learning outcomes. (Biology 403)

Subjects

biology | biotechnology | technology | genes | engineering | genetically modified | genetics | forensics | dna | genomics | proteomics | defects | therapy | renewable energy | environmental | immunology | stem cell | Biological sciences | C000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.91J Foundations of Computational and Systems Biology (MIT)

Description

Serving as an introduction to computational biology, this course emphasizes the fundamentals of nucleic acid and protein sequence analysis, structural analysis, and the analysis of complex biological systems. The principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction, and network modeling are covered. Students are also exposed to currently emerging research areas in the fields of computational and systems biology.

Subjects

computational biology | systems biology | bioinformatics | sequence analysis | proteomics | sequence alignment | protein folding | structure prediction | network modeling | phylogenetics | pairwise sequence comparisons | ncbi | blast | protein structure | dynamic programming | genome sequencing | DNA | RNA | x-ray crystallography | NMR | homologs | ab initio structure prediction | DNA microarrays | clustering | proteome | computational annotation | BE.490J | 7.91 | 7.36 | BE.490 | 20.490

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.950J Engineering Biomedical Information: From Bioinformatics to Biosurveillance (MIT)

Description

This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research.

Subjects

biomedical informatics | bioinformatics | biomedical research | biological computing | biomedical computing | computational genomics | genomics | microarrays | proteomics | pharmacogenomics | genomic privacy | clinical informatics | biosurveillance | privacy | biotechnology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.453J Biomedical Information Technology (BE.453J) (MIT)

Description

The objective of this subject is to teach the design of contemporary information systems for biological and medical data. These data are growing at a prodigious rate, and new information systems are required. This subject will cover examples from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures will be covered. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (C, C++, Java®, Lisp, Perl, Python, etc.). A major term project is

Subjects

imaging | medical imaging | metadata | medical record | DICOM | computer architecture | client-server architecture | SEM | TEM | OME | RDF | semantic web | BioHaystack | database | schema | ExperiBase | genomics | proteomics | bioinformatics | clinical decision support | microarray | gel electrophoresis | diagnosis | 20.453 | 2.771 | HST.958

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.453J Biomedical Information Technology (MIT)

Description

The objective of this subject is to teach the design of contemporary information systems for biological and medical data. These data are growing at a prodigious rate, and new information systems are required. This subject will cover examples from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures will be covered. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (C, C++, Java®, Lisp, Perl, Python, etc.). A major term project is

Subjects

imaging | medical imaging | metadata | medical record | DICOM | computer architecture | client-server architecture | SEM | TEM | OME | RDF | semantic web | BioHaystack | database | schema | ExperiBase | genomics | proteomics | bioinformatics | clinical decision support | microarray | gel electrophoresis | diagnosis | 2.771J | 2.771 | HST.958J | HST.958

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.91J Foundations of Computational and Systems Biology (MIT)

Description

This course is an introduction to computational biology emphasizing the fundamentals of nucleic acid and protein sequence and structural analysis; it also includes an introduction to the analysis of complex biological systems. Topics covered in the course include principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction and network modeling, as well as currently emerging research areas.

Subjects

7.91 | 20.490 | 20.390 | 7.36 | 6.802 | 6.874 | HST.506 | computational biology | systems biology | bioinformatics | artificial intelligence | sequence analysis | proteomics | sequence alignment | protein folding | structure prediction | network modeling | phylogenetics | pairwise sequence comparisons | ncbi | blast | protein structure | dynamic programming | genome sequencing | DNA | RNA | x-ray crystallography | NMR | homologs | ab initio structure prediction | DNA microarrays | clustering | proteome | computational annotation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.453J Biomedical Information Technology (MIT)

Description

This course teaches the design of contemporary information systems for biological and medical data. Examples are chosen from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (e.g. C, C++, Java, Lisp, Perl, Python). A major term project is required of all students. This subject is open to motivated seniors having a strong interest in biomedical engineering and information system desig

Subjects

20.453 | 2.771 | HST.958 | imaging | medical imaging | metadata | molecular biology | medical records | DICOM | RDF | OWL | SPARQL | SBML | CellML | semantic web | BioHaystack | database | schema | ExperiBase | genomics | proteomics | bioinformatics | computational biology | clinical decision support | clinical trial | microarray | gel electrophoresis | diagnosis | pathway modeling | XML | SQL | relational database | biological data | ontologies | drug development | drug discovery | drug target | pharmaceutical | gene sequencing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.047 Computational Biology (MIT)

Description

This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets.

Subjects

Genomes | Networks | Evolution | computational biology | genomics | comparative genomics | epigenomics | functional genomics | motifs | phylogenomics | personal genomics | algorithms | machine learning | biology | biological datasets | proteomics | sequence analysis | sequence alignment | genome assembly | network motifs | network evolution | graph algorithms | phylogenetics | python | probability | statistics | entropy | information

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.508 Quantitative Genomics (MIT)

Description

This course provides a foundation in the following four areas: evolutionary and population genetics; comparative genomics; structural genomics and proteomics; and functional genomics and regulation.

Subjects

genomics | quantitative genomics | comparative genomics | genes | genome | SNPs | haplotypes | sequence alignment | protein structure | protein folding | proteomics | structural genomics | functional genomics | networks | systems biology | biological networks | RNA | DNA | gene expression | evolutionary genetics | population genetics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.947 Medical Artificial Intelligence (MIT)

Description

This course provides an intensive introduction to artificial intelligence and its applications to problems of medical diagnosis, therapy selection, and monitoring and learning from databases. It meets with lectures and recitations of 6.034 Artificial Intelligence, whose material is supplemented by additional medical-specific readings in a weekly discussion session. Students are responsible for completing all homework assignments in 6.034 and for additional problems and/or papers.

Subjects

Introduces representations | techniques | and architectures used to build applied systems | computational intelligence | rule chaining | heuristic search | constraint propagation | constrained search | inheritance | problem-solving paradigms | identification trees | neural nets | genetic algorithms | learning paradigms | Speculations on the contributions of human vision and language systems to human intelligence | Meets with HST.947 spring only | 4 Engineering Design Points | artificial intelligence | applied systems | human intelligence | knowledge representation | intelligent systems | diagnosis | clinical simulation | genomics | proteomics | bioinformatics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata