Searching for quantum computation : 10 results found | RSS Feed for this search
6.050J Information and Entropy (MIT) 6.050J Information and Entropy (MIT)
Description
6.050J / 2.110J presents the unified theory of information with applications to computing, communications, thermodynamics, and other sciences. It covers digital signals and streams, codes, compression, noise, and probability, reversible and irreversible operations, information in biological systems, channel capacity, maximum-entropy formalism, thermodynamic equilibrium, temperature, the Second Law of Thermodynamics, and quantum computation. Designed for MIT freshmen as an elective, this course has been jointly developed by MIT's Departments of Electrical Engineering and Computer Science and Mechanical Engineering. There is no known course similar to 6.050J / 2.110J offered at any other university.  6.050J / 2.110J presents the unified theory of information with applications to computing, communications, thermodynamics, and other sciences. It covers digital signals and streams, codes, compression, noise, and probability, reversible and irreversible operations, information in biological systems, channel capacity, maximum-entropy formalism, thermodynamic equilibrium, temperature, the Second Law of Thermodynamics, and quantum computation. Designed for MIT freshmen as an elective, this course has been jointly developed by MIT's Departments of Electrical Engineering and Computer Science and Mechanical Engineering. There is no known course similar to 6.050J / 2.110J offered at any other university. Subjects
information and entropy | information and entropy | computing | computing | communications | communications | thermodynamics | thermodynamics | digital signals and streams | digital signals and streams | codes | codes | compression | compression | noise | noise | probability | probability | reversible operations | reversible operations | irreversible operations | irreversible operations | information in biological systems | information in biological systems | channel capacity | channel capacity | aximum-entropy formalism | aximum-entropy formalism | thermodynamic equilibrium | thermodynamic equilibrium | temperature | temperature | second law of thermodynamics quantum computation | second law of thermodynamics quantum computation | maximum-entropy formalism | maximum-entropy formalism | second law of thermodynamics | second law of thermodynamics | quantum computation | quantum computation | biological systems | biological systems | unified theory of information | unified theory of information | digital signals | digital signals | digital streams | digital streams | bits | bits | errors | errors | processes | processes | inference | inference | maximum entropy | maximum entropy | physical systems | physical systems | energy | energy | quantum information | quantum information | 6.050 | 6.050 | 2.110 | 2.110License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataMAS.865J Quantum Information Science (MIT) MAS.865J Quantum Information Science (MIT)
Description
This is an advanced graduate course on quantum computation and quantum information, for which prior knowledge of quantum mechanics is required. Topics include quantum computation, advanced quantum error correction codes, fault tolerance, quantum algorithms beyond factoring, properties of quantum entanglement, and quantum protocols and communication complexity. This is an advanced graduate course on quantum computation and quantum information, for which prior knowledge of quantum mechanics is required. Topics include quantum computation, advanced quantum error correction codes, fault tolerance, quantum algorithms beyond factoring, properties of quantum entanglement, and quantum protocols and communication complexity.Subjects
quantum computation | quantum computation | quantum error correction codes | quantum error correction codes | fault tolerance | fault tolerance | quantum algorithms | quantum algorithms | quantum entanglement | quantum entanglement | quantum protocols | quantum protocols | communication complexity | communication complexity | quantum cryptography | quantum cryptography | adiabatic quantum computation | adiabatic quantum computation | MAS.865 | MAS.865 | 6.443 | 6.443 | 8.371 | 8.371License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.050J Information and Entropy (MIT) 6.050J Information and Entropy (MIT)
Description
Includes audio/video content: AV selected lectures. This course explores the ultimate limits to communication and computation, with an emphasis on the physical nature of information and information processing. Topics include: information and computation, digital signals, codes and compression, applications such as biological representations of information, logic circuits, computer architectures, and algorithmic information, noise, probability, error correction, reversible and irreversible operations, physics of computation, and quantum computation. The concept of entropy applied to channel capacity and to the second law of thermodynamics. Includes audio/video content: AV selected lectures. This course explores the ultimate limits to communication and computation, with an emphasis on the physical nature of information and information processing. Topics include: information and computation, digital signals, codes and compression, applications such as biological representations of information, logic circuits, computer architectures, and algorithmic information, noise, probability, error correction, reversible and irreversible operations, physics of computation, and quantum computation. The concept of entropy applied to channel capacity and to the second law of thermodynamics.Subjects
information and entropy | information and entropy | computing | computing | communications | communications | thermodynamics | thermodynamics | digital signals and streams | digital signals and streams | codes | codes | compression | compression | noise | noise | probability | probability | reversible operations | reversible operations | irreversible operations | irreversible operations | information in biological systems | information in biological systems | channel capacity | channel capacity | maximum-entropy formalism | maximum-entropy formalism | thermodynamic equilibrium | thermodynamic equilibrium | temperature | temperature | second law of thermodynamics quantum computation | second law of thermodynamics quantum computationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.845 Quantum Complexity Theory (MIT) 6.845 Quantum Complexity Theory (MIT)
Description
This course is an introduction to quantum computational complexity theory, the study of the fundamental capabilities and limitations of quantum computers. Topics include complexity classes, lower bounds, communication complexity, proofs, advice, and interactive proof systems in the quantum world. The objective is to bring students to the research frontier. This course is an introduction to quantum computational complexity theory, the study of the fundamental capabilities and limitations of quantum computers. Topics include complexity classes, lower bounds, communication complexity, proofs, advice, and interactive proof systems in the quantum world. The objective is to bring students to the research frontier.Subjects
quantum computational complexity theory | quantum computational complexity theory | quantum computers | quantum computers | complexity classes | complexity classes | lower bounds | lower bounds | communication complexity | communication complexity | interactive proof systems | interactive proof systems | BQP | BQP | quantum algorithms | quantum algorithms | QMA | QMA | quantum Merlin Arthur | quantum Merlin ArthurLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata18.435J Quantum Computation (MIT) 18.435J Quantum Computation (MIT)
Description
This course provides an introduction to the theory and practice of quantum computation. Topics covered include: physics of information processing, quantum logic, quantum algorithms including Shor's factoring algorithm and Grover's search algorithm, quantum error correction, quantum communication, and cryptography. This course provides an introduction to the theory and practice of quantum computation. Topics covered include: physics of information processing, quantum logic, quantum algorithms including Shor's factoring algorithm and Grover's search algorithm, quantum error correction, quantum communication, and cryptography.Subjects
quantum computation | quantum computation | physics of information processing | physics of information processing | quantum logic | quantum logic | quantum algorithms including Shor's factoring algorithm and Grover's search algorithm | quantum algorithms including Shor's factoring algorithm and Grover's search algorithm | quantum error correction | quantum error correction | quantum communication | quantum communication | cryptography | cryptography | 18.345 | 18.345 | 2.111 | 2.111 | ESD.79 | ESD.79License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.050J Information and Entropy (MIT)
Description
6.050J / 2.110J presents the unified theory of information with applications to computing, communications, thermodynamics, and other sciences. It covers digital signals and streams, codes, compression, noise, and probability, reversible and irreversible operations, information in biological systems, channel capacity, maximum-entropy formalism, thermodynamic equilibrium, temperature, the Second Law of Thermodynamics, and quantum computation. Designed for MIT freshmen as an elective, this course has been jointly developed by MIT's Departments of Electrical Engineering and Computer Science and Mechanical Engineering. There is no known course similar to 6.050J / 2.110J offered at any other university. Subjects
information and entropy | computing | communications | thermodynamics | digital signals and streams | codes | compression | noise | probability | reversible operations | irreversible operations | information in biological systems | channel capacity | aximum-entropy formalism | thermodynamic equilibrium | temperature | second law of thermodynamics quantum computation | maximum-entropy formalism | second law of thermodynamics | quantum computation | biological systems | unified theory of information | digital signals | digital streams | bits | errors | processes | inference | maximum entropy | physical systems | energy | quantum information | 6.050 | 2.110License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataMAS.865J Quantum Information Science (MIT)
Description
This is an advanced graduate course on quantum computation and quantum information, for which prior knowledge of quantum mechanics is required. Topics include quantum computation, advanced quantum error correction codes, fault tolerance, quantum algorithms beyond factoring, properties of quantum entanglement, and quantum protocols and communication complexity.Subjects
quantum computation | quantum error correction codes | fault tolerance | quantum algorithms | quantum entanglement | quantum protocols | communication complexity | quantum cryptography | adiabatic quantum computation | MAS.865 | 6.443 | 8.371License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata18.435J Quantum Computation (MIT)
Description
This course provides an introduction to the theory and practice of quantum computation. Topics covered include: physics of information processing, quantum logic, quantum algorithms including Shor's factoring algorithm and Grover's search algorithm, quantum error correction, quantum communication, and cryptography.Subjects
quantum computation | physics of information processing | quantum logic | quantum algorithms including Shor's factoring algorithm and Grover's search algorithm | quantum error correction | quantum communication | cryptography | 18.345 | 2.111 | ESD.79License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.845 Quantum Complexity Theory (MIT)
Description
This course is an introduction to quantum computational complexity theory, the study of the fundamental capabilities and limitations of quantum computers. Topics include complexity classes, lower bounds, communication complexity, proofs, advice, and interactive proof systems in the quantum world. The objective is to bring students to the research frontier.Subjects
quantum computational complexity theory | quantum computers | complexity classes | lower bounds | communication complexity | interactive proof systems | BQP | quantum algorithms | QMA | quantum Merlin ArthurLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.050J Information and Entropy (MIT)
Description
This course explores the ultimate limits to communication and computation, with an emphasis on the physical nature of information and information processing. Topics include: information and computation, digital signals, codes and compression, applications such as biological representations of information, logic circuits, computer architectures, and algorithmic information, noise, probability, error correction, reversible and irreversible operations, physics of computation, and quantum computation. The concept of entropy applied to channel capacity and to the second law of thermodynamics.Subjects
information and entropy | computing | communications | thermodynamics | digital signals and streams | codes | compression | noise | probability | reversible operations | irreversible operations | information in biological systems | channel capacity | maximum-entropy formalism | thermodynamic equilibrium | temperature | second law of thermodynamics quantum computationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata