Searching for quantum cryptography : 8 results found | RSS Feed for this search
6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)
Description
This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following. Quantum optics: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; radiation field quantization and quantum field propagation; P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle; beam splitters; phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection, heterodyne detection, and homodyne detection.&a This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following. Quantum optics: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; radiation field quantization and quantum field propagation; P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle; beam splitters; phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection, heterodyne detection, and homodyne detection.&aSubjects
Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | coherent states | and squeezed states | number states | coherent states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields | P-representation and classical fields | Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers | phase-insensitive and phase-sensitive amplifiers | Quantum photodetection: direct detection | heterodyne detection | and homodyne detection | Quantum photodetection: direct detection | heterodyne detection | and homodyne detection | Second-order nonlinear optics: phasematched interactions | Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | Quantum systems theory: optimum binary detection | Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | quantum teleportation | quantum teleportationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)
Description
This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and pola This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and polaSubjects
Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | number states | coherent states | coherent states | and squeezed states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | heterodyne detection | heterodyne detection | and homodyne detection. Second-order nonlinear optics: phasematched interactions | and homodyne detection. Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | generation of squeezed states | photon-twin beams | photon-twin beams | non-classical fourth-order interference | non-classical fourth-order interference | and polarization entanglement. Quantum systems theory: optimum binary detection | and polarization entanglement. Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | and quantum teleportation. | and quantum teleportation.License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataMAS.865J Quantum Information Science (MIT) MAS.865J Quantum Information Science (MIT)
Description
This is an advanced graduate course on quantum computation and quantum information, for which prior knowledge of quantum mechanics is required. Topics include quantum computation, advanced quantum error correction codes, fault tolerance, quantum algorithms beyond factoring, properties of quantum entanglement, and quantum protocols and communication complexity. This is an advanced graduate course on quantum computation and quantum information, for which prior knowledge of quantum mechanics is required. Topics include quantum computation, advanced quantum error correction codes, fault tolerance, quantum algorithms beyond factoring, properties of quantum entanglement, and quantum protocols and communication complexity.Subjects
quantum computation | quantum computation | quantum error correction codes | quantum error correction codes | fault tolerance | fault tolerance | quantum algorithms | quantum algorithms | quantum entanglement | quantum entanglement | quantum protocols | quantum protocols | communication complexity | communication complexity | quantum cryptography | quantum cryptography | adiabatic quantum computation | adiabatic quantum computation | MAS.865 | MAS.865 | 6.443 | 6.443 | 8.371 | 8.371License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.453 Quantum Optical Communication (MIT) 6.453 Quantum Optical Communication (MIT)
Description
This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and pola This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and polaSubjects
Quantum optics: Dirac notation quantum mechanics | Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | harmonic oscillator quantization | number states | number states | coherent states | coherent states | and squeezed states | and squeezed states | radiation field quantization and quantum field propagation | radiation field quantization and quantum field propagation | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | beam splitters | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | heterodyne detection | heterodyne detection | and homodyne detection. Second-order nonlinear optics: phasematched interactions | and homodyne detection. Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | optical parametric amplifiers | generation of squeezed states | generation of squeezed states | photon-twin beams | photon-twin beams | non-classical fourth-order interference | non-classical fourth-order interference | and polarization entanglement. Quantum systems theory: optimum binary detection | and polarization entanglement. Quantum systems theory: optimum binary detection | quantum precision measurements | quantum precision measurements | quantum cryptography | quantum cryptography | and quantum teleportation. | and quantum teleportation.License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.453 Quantum Optical Communication (MIT)
Description
This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following. Quantum optics: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; radiation field quantization and quantum field propagation; P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle; beam splitters; phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection, heterodyne detection, and homodyne detection.&aSubjects
Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | number states | coherent states | and squeezed states | radiation field quantization and quantum field propagation | P-representation and classical fields | Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | phase-insensitive and phase-sensitive amplifiers | Quantum photodetection: direct detection | heterodyne detection | and homodyne detection | Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | Quantum systems theory: optimum binary detection | quantum precision measurements | quantum cryptography | quantum teleportationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataMAS.865J Quantum Information Science (MIT)
Description
This is an advanced graduate course on quantum computation and quantum information, for which prior knowledge of quantum mechanics is required. Topics include quantum computation, advanced quantum error correction codes, fault tolerance, quantum algorithms beyond factoring, properties of quantum entanglement, and quantum protocols and communication complexity.Subjects
quantum computation | quantum error correction codes | fault tolerance | quantum algorithms | quantum entanglement | quantum protocols | communication complexity | quantum cryptography | adiabatic quantum computation | MAS.865 | 6.443 | 8.371License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.453 Quantum Optical Communication (MIT)
Description
6.453 Quantum Optical Communication is one of a collection of MIT classes that deals with aspects of an emerging field known as quantum information science. This course covers Quantum Optics, Single-Mode and Two-Mode Quantum Systems, Multi-Mode Quantum Systems, Nonlinear Optics, and Quantum System Theory.Subjects
Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | number states | coherent states | and squeezed states | radiation field quantization and quantum field propagation | Prepresentation and classical fields | Linear loss and linear amplification: Commutator preservation and the Uncertainty Principle | beam splitters | phase-insensitive and phase-sensitive amplifiers | Quantum photodetection: Direct detection | heterodyne detection | and homodyne detection | Second-order nonlinear optics: Phasematched interactions | optical parametric amplifiers | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement | Quantum systems theory: optimum binary detection | quantum precision measurements | quantum cryptography | and quantum teleportationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.453 Quantum Optical Communication (MIT)
Description
This course is offered to graduate students and covers topics in five major areas of quantum optical communication: quantum optics, single-mode and two-mode quantum systems, multi-mode quantum systems, nonlinear optics, and quantum systems theory. Specific topics include the following: Dirac notation quantum mechanics; harmonic oscillator quantization; number states, coherent states, and squeezed states; P-representation and classical fields; direct, homodyne, and heterodyne detection; linear propagation loss; phase insensitive and phase sensitive amplifiers; entanglement and teleportation; field quantization; quantum photodetection; phase-matched interactions; optical parametric amplifiers; generation of squeezed states, photon-twin beams, non-classical fourth-order interference, and polaSubjects
Quantum optics: Dirac notation quantum mechanics | harmonic oscillator quantization | number states | coherent states | and squeezed states | radiation field quantization and quantum field propagation | P-representation and classical fields. Linear loss and linear amplification: commutator preservation and the Uncertainty Principle | beam splitters | phase-insensitive and phase-sensitive amplifiers. Quantum photodetection: direct detection | heterodyne detection | and homodyne detection. Second-order nonlinear optics: phasematched interactions | optical parametric amplifiers | generation of squeezed states | photon-twin beams | non-classical fourth-order interference | and polarization entanglement. Quantum systems theory: optimum binary detection | quantum precision measurements | quantum cryptography | and quantum teleportation.License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata