Searching for radar : 129 results found | RSS Feed for this search

1 2 3 4 5

3-D Perspective Pasadena, California 3-D Perspective Pasadena, California

Description

Subjects

pasadena | pasadena | srtm | srtm | dlr | dlr | nima | nima | asi | asi | sangabrielmountains | sangabrielmountains | unitedstatesgeologicalsurvey | unitedstatesgeologicalsurvey | shuttleradartopographymission | shuttleradartopographymission | italianspaceagency | italianspaceagency | germanspaceagency | germanspaceagency | landsatspaceborneimagingradar | landsatspaceborneimagingradar | bandsyntheticapertureradar | bandsyntheticapertureradar | sirxsar | sirxsar | nationalimageryandmappingagency | nationalimageryandmappingagency

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.325 Topics in Applied Mathematics: Waves and Imaging (MIT) 18.325 Topics in Applied Mathematics: Waves and Imaging (MIT)

Description

This class covers the mathematics of inverse problems involving waves, with examples taken from reflection seismology, synthetic aperture radar, and computerized tomography. This class covers the mathematics of inverse problems involving waves, with examples taken from reflection seismology, synthetic aperture radar, and computerized tomography.

Subjects

waves | waves | imaging | imaging | radar imaging | radar imaging | seismic imaging | seismic imaging | Radon transform | Radon transform | backprojection | backprojection | reflection seismology | reflection seismology | computerized tomography | computerized tomography | synthetic aperture radar | synthetic aperture radar

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3-D Perspective Kamchatka Peninsula Russia

Description

Subjects

southdakota | russia | srtm | jpl | jetpropulsionlaboratory | kamchatkapeninsula | geologicalsurveys | shuttleradartopographymission | xbandsyntheticapetureradar | earthresourcesobservationssystemseros | landsatspaceborneimagingradar | sirxsar

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.325 Topics in Applied Mathematics: Waves and Imaging (MIT)

Description

This class covers the mathematics of inverse problems involving waves, with examples taken from reflection seismology, synthetic aperture radar, and computerized tomography.

Subjects

waves | imaging | radar imaging | seismic imaging | Radon transform | backprojection | reflection seismology | computerized tomography | synthetic aperture radar

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Rene Francillon Collection Image Rene Francillon Collection Image

Description

Subjects

f16 | f16 | ge | ge | viper | viper | usaf | usaf | gd | gd | usairforce | usairforce | generalelectric | generalelectric | aam | aam | ecm | ecm | lockheedmartin | lockheedmartin | unitedstatesairforce | unitedstatesairforce | generaldynamics | generaldynamics | missilelaunch | missilelaunch | f16fightingfalcon | f16fightingfalcon | fightingfalcon | fightingfalcon | f16c | f16c | f110 | f110 | amraam | amraam | aim120 | aim120 | radarjammer | radarjammer | 77fs | 77fs | lockheedmartinf16 | lockheedmartinf16 | generaldynamicsf16 | generaldynamicsf16 | lockheedmartinf16fightingfalcon | lockheedmartinf16fightingfalcon | electroniccountermeasures | electroniccountermeasures | lockmart | lockmart | f16cfightingfalcon | f16cfightingfalcon | generaldynamicsf16c | generaldynamicsf16c | block50 | block50 | generaldynamicsf16fightingfalcon | generaldynamicsf16fightingfalcon | analq184 | analq184 | airtoairmissile | airtoairmissile | generaldynamicsf16cfightingfalcon | generaldynamicsf16cfightingfalcon | lockheedmartinf16c | lockheedmartinf16c | gef110 | gef110 | ecmpod | ecmpod | 77thfightersquadron | 77thfightersquadron | aim120amraam | aim120amraam | lockheedmartinf16cfightingfalcon | lockheedmartinf16cfightingfalcon | generalelectricf110 | generalelectricf110 | f16cblock50 | f16cblock50 | 900815 | 900815 | f110ge129 | f110ge129 | 77thfs | 77thfs | block50b | block50b | generalelectricf110ge129 | generalelectricf110ge129 | gef110ge129 | gef110ge129 | f16cblock50b | f16cblock50b

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Endeavour with Columbia Ferry Flyby Endeavour with Columbia Ferry Flyby

Description

Subjects

sca | sca | columbia | columbia | shuttle | shuttle | edwards | edwards | boeing747 | boeing747 | palmdale | palmdale | srl | srl | dryden | dryden | endeavour | endeavour | groundsupport | groundsupport | shuttlecarrieraircraft | shuttlecarrieraircraft | sts68 | sts68 | spaceradarlaboratory | spaceradarlaboratory

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT) 6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions. This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

ESD.013 | ESD.013 | electromagnetics | electromagnetics | applications | applications | wireless communications | wireless communications | circuits | circuits | computer interconnects | computer interconnects | peripherals | peripherals | optical fiber links | optical fiber links | microwave communications | microwave communications | radar | radar | antennas | antennas | sensors | sensors | micro-electromechanical systems | micro-electromechanical systems | power generation | power generation | power transmission | power transmission | quasistatic solutions | quasistatic solutions | dynamic solutions | dynamic solutions | Maxwell | Maxwell | Maxwell's equations | Maxwell's equations | waves | waves | radiation | radiation | diffraction | diffraction | guided waves | guided waves | unguided waves | unguided waves | resonance | resonance | forces | forces | power | power | energy | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT) 6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.The instructors of this course extend a general acknowledgment to the many students and instructors who have made major contributions to the 6.013 course materials over the years, and apologize for any residual errors that may remain in these writ This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.The instructors of this course extend a general acknowledgment to the many students and instructors who have made major contributions to the 6.013 course materials over the years, and apologize for any residual errors that may remain in these writ

Subjects

electromagnetics | electromagnetics | applications | applications | wireless communications | wireless communications | circuits | circuits | computer interconnects | computer interconnects | peripherals | peripherals | optical fiber links | optical fiber links | microwave | microwave | communications | communications | radar | radar | antennas | antennas | sensors | sensors | micro-electromechanical systems | micro-electromechanical systems | power generation | power generation | power transmission | power transmission | quasistatic solutions | quasistatic solutions | dynamic solutions | dynamic solutions | Maxwell | Maxwell | Maxwell's equations | Maxwell's equations | waves | waves | radiation | radiation | diffraction | diffraction | guided waves | guided waves | unguided waves | unguided waves | resonance | resonance | forces | forces | power | power | energy | energy | microwave communications | microwave communications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.661 Receivers, Antennas, and Signals (MIT) 6.661 Receivers, Antennas, and Signals (MIT)

Description

This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation. This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation.

Subjects

receiver | receiver | antenna | antenna | signal | signal | radio | radio | optical | optical | detection | detection | communications | communications | astronomy | astronomy | remote sensing | instrumentation | remote sensing | instrumentation | radar | radar | statistics | statistics | signal processing | signal processing | radiometer | radiometer | spectrometer | spectrometer | interferometer | interferometer | digital correlation | digital correlation | matched filter | matched filter | ambiguity function | ambiguity function | channel performance | channel performance | electromagnetic | electromagnetic | angular filtering | angular filtering | aperture synthesis | aperture synthesis | radiative transfer | radiative transfer | parameter estimation | parameter estimation | remote sensing | remote sensing | instrumentation | instrumentation | radio signals | radio signals | optical signals | optical signals | statistical analysis | statistical analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.637 Optical Signals, Devices, and Systems (MIT) 6.637 Optical Signals, Devices, and Systems (MIT)

Description

6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this 6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood. Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this

Subjects

optical | optical | optical signals | optical signals | optical devices | optical devices | transmission | transmission | detection | detection | storage | storage | processing | processing | display | display | electromagnetic waves | electromagnetic waves | diffraction | diffraction | holography | holography | lasers | lasers | LEDs | LEDs | spatial light modulation | spatial light modulation | display technologies | display technologies | optical waveguides | optical waveguides | fiberoptic communication | fiberoptic communication | thermal photodetector | thermal photodetector | quantum photodetector | quantum photodetector | optical storage media | optical storage media | disks | disks | 3-D holographic material | 3-D holographic material | coherent optical processor | coherent optical processor | incoherent optical processor | incoherent optical processor | Fourier optics | Fourier optics | acousto-optics | acousto-optics | optoelectronic neural networks | optoelectronic neural networks | optical interconnection device technologies | optical interconnection device technologies | image processing | image processing | pattern recognition | pattern recognition | radar systems | radar systems | adaptive optical systems | adaptive optical systems | 6.161 | 6.161

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.682 Technology in Transportation (MIT) 16.682 Technology in Transportation (MIT)

Description

This course provides an introduction to the transportation industry's major technical challenges and considerations. For upper level undergraduates interested in learning about the transportation field in a broad but quantitative manner. Topics include road vehicle engineering, internal combustion engines, batteries and motors, electric and hybrid powertrains, urban and high speed rail transportation, water vessels, aircraft types and aerodynamics, radar, navigation, GPS, GIS. Students will complete a project on a subject of their choosing. This course provides an introduction to the transportation industry's major technical challenges and considerations. For upper level undergraduates interested in learning about the transportation field in a broad but quantitative manner. Topics include road vehicle engineering, internal combustion engines, batteries and motors, electric and hybrid powertrains, urban and high speed rail transportation, water vessels, aircraft types and aerodynamics, radar, navigation, GPS, GIS. Students will complete a project on a subject of their choosing.

Subjects

technology | technology | transportation | transportation | energy in transportation | energy in transportation | internal combustion engines | internal combustion engines | road vehicle engineering | road vehicle engineering | machine elements | machine elements | hybrids | hybrids | electricity and magnetism | electricity and magnetism | shipping | shipping | fluid dynamics | fluid dynamics | aircraft types and history | aircraft types and history | GPS | GPS | GIS | GIS | radar | radar

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

RES.LL-003 Build a Small Radar System Capable of Sensing Range, Doppler, and Synthetic Aperture Radar Imaging (MIT) RES.LL-003 Build a Small Radar System Capable of Sensing Range, Doppler, and Synthetic Aperture Radar Imaging (MIT)

Description

Are you interested in building and testing your own imaging radar system? MIT Lincoln Laboratory offers this 3-week course in the design, fabrication, and test of a laptop-based radar sensor capable of measuring Doppler, range, and forming synthetic aperture radar (SAR) images. You do not have to be a radar engineer but it helps if you are interested in any of the following; electronics, amateur radio, physics, or electromagnetics. It is recommended that you have some familiarity with MATLAB®. Teams of three students will receive a radar kit and will attend a total of 5 sessions spanning topics from the fundamentals of radar to SAR imaging. Experiments will be performed each week as the radar kit is implemented. You will bring your radar kit into the field and perform additional experi Are you interested in building and testing your own imaging radar system? MIT Lincoln Laboratory offers this 3-week course in the design, fabrication, and test of a laptop-based radar sensor capable of measuring Doppler, range, and forming synthetic aperture radar (SAR) images. You do not have to be a radar engineer but it helps if you are interested in any of the following; electronics, amateur radio, physics, or electromagnetics. It is recommended that you have some familiarity with MATLAB®. Teams of three students will receive a radar kit and will attend a total of 5 sessions spanning topics from the fundamentals of radar to SAR imaging. Experiments will be performed each week as the radar kit is implemented. You will bring your radar kit into the field and perform additional experi

Subjects

applied electromagnetics | applied electromagnetics | RF design | RF design | signal processing | signal processing | analog design | analog design | radar system design | radar system design | practical electronics | practical electronics | MATLAB | MATLAB

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-RES.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The Tizard Mission

Description

Stephen Phelps, Brasenose Alumnus, introduces his book about the top-secret operation that changed the course of World War II. Available now through Amazon or Pen and Sword. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

World War II | Brasenose College | united states | radar | Britain | Germany | military | technology | World War II | Brasenose College | united states | radar | Britain | Germany | military | technology

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129248/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

electromagnetics | applications | wireless communications | circuits | computer interconnects | peripherals | optical fiber links | microwave communications | radar | antennas | sensors | micro-electromechanical systems | power generation | power transmission | quasistatic solutions | dynamic solutions | Maxwell | Maxwell's equations | waves | radiation | diffraction | guided waves | unguided waves | resonance | forces | power | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

electromagnetics | applications | wireless communications | circuits | computer interconnects | peripherals | optical fiber links | microwave communications | radar | antennas | sensors | micro-electromechanical systems | power generation | power transmission | quasistatic solutions | dynamic solutions | Maxwell | Maxwell's equations | waves | radiation | diffraction | guided waves | unguided waves | resonance | forces | power | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

electromagnetics | applications | wireless communications | circuits | computer interconnects | peripherals | optical fiber links | microwave communications | radar | antennas | sensors | micro-electromechanical systems | power generation | power transmission | quasistatic solutions | dynamic solutions | Maxwell | Maxwell's equations | waves | radiation | diffraction | guided waves | unguided waves | resonance | forces | power | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

electromagnetics | applications | wireless communications | circuits | computer interconnects | peripherals | optical fiber links | microwave communications | radar | antennas | sensors | micro-electromechanical systems | power generation | power transmission | quasistatic solutions | dynamic solutions | Maxwell | Maxwell's equations | waves | radiation | diffraction | guided waves | unguided waves | resonance | forces | power | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

electromagnetics | applications | wireless communications | circuits | computer interconnects | peripherals | optical fiber links | microwave communications | radar | antennas | sensors | micro-electromechanical systems | power generation | power transmission | quasistatic solutions | dynamic solutions | Maxwell | Maxwell's equations | waves | radiation | diffraction | guided waves | unguided waves | resonance | forces | power | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Radar screen illustration

Description

An illustration of a radar screen, by Jayne Stuart of the Media Workshop, Oxford Brookes University. Drawn as part of publicity for the RADAR project.

Subjects

ukoer radar sweep discover circle grid

License

copyright Oxford Brookes University, except where indicated in the item description. Creative Commons License
This work is licensed under a Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales License. copyright Oxford Brookes University, except where indicated in the item description. This work is licensed under a Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales License.

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

electromagnetics | applications | wireless communications | circuits | computer interconnects | peripherals | optical fiber links | microwave communications | radar | antennas | sensors | micro-electromechanical systems | power generation | power transmission | quasistatic solutions | dynamic solutions | Maxwell | Maxwell's equations | waves | radiation | diffraction | guided waves | unguided waves | resonance | forces | power | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

electromagnetics | applications | wireless communications | circuits | computer interconnects | peripherals | optical fiber links | microwave communications | radar | antennas | sensors | micro-electromechanical systems | power generation | power transmission | quasistatic solutions | dynamic solutions | Maxwell | Maxwell's equations | waves | radiation | diffraction | guided waves | unguided waves | resonance | forces | power | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

electromagnetics | applications | wireless communications | circuits | computer interconnects | peripherals | optical fiber links | microwave communications | radar | antennas | sensors | micro-electromechanical systems | power generation | power transmission | quasistatic solutions | dynamic solutions | Maxwell | Maxwell's equations | waves | radiation | diffraction | guided waves | unguided waves | resonance | forces | power | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

electromagnetics | applications | wireless communications | circuits | computer interconnects | peripherals | optical fiber links | microwave communications | radar | antennas | sensors | micro-electromechanical systems | power generation | power transmission | quasistatic solutions | dynamic solutions | Maxwell | Maxwell's equations | waves | radiation | diffraction | guided waves | unguided waves | resonance | forces | power | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.The instructors of this course extend a general acknowledgment to the many students and instructors who have made major contributions to the 6.013 course materials over the years, and apologize for any residual errors that may remain in these writ

Subjects

electromagnetics | applications | wireless communications | circuits | computer interconnects | peripherals | optical fiber links | microwave | communications | radar | antennas | sensors | micro-electromechanical systems | power generation | power transmission | quasistatic solutions | dynamic solutions | Maxwell | Maxwell's equations | waves | radiation | diffraction | guided waves | unguided waves | resonance | forces | power | energy | microwave communications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subjects

electromagnetics | applications | wireless communications | circuits | computer interconnects | peripherals | optical fiber links | microwave communications | radar | antennas | sensors | micro-electromechanical systems | power generation | power transmission | quasistatic solutions | dynamic solutions | Maxwell | Maxwell's equations | waves | radiation | diffraction | guided waves | unguided waves | resonance | forces | power | energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata