Searching for radiation protection : 10 results found | RSS Feed for this search

22.01 Introduction to Ionizing Radiation (MIT) 22.01 Introduction to Ionizing Radiation (MIT)

Description

This course is an introduction to basic properties of ionizing radiations and their uses in medicine, industry, science, and environmental studies. Discusses natural and man-made radiation sources, energy deposition and dose calculations, various physical, chemical, and biological processes and effects of radiation with examples of their uses, and principles of radiation protection. Term paper and oral presentation of paper required.This course was originally developed by Dr. Jacquelyn Yanch.  As such, significant portions of the materials presented here were derived from her work. This course is an introduction to basic properties of ionizing radiations and their uses in medicine, industry, science, and environmental studies. Discusses natural and man-made radiation sources, energy deposition and dose calculations, various physical, chemical, and biological processes and effects of radiation with examples of their uses, and principles of radiation protection. Term paper and oral presentation of paper required.This course was originally developed by Dr. Jacquelyn Yanch.  As such, significant portions of the materials presented here were derived from her work.

Subjects

ionizing radiations | ionizing radiations | radiation sources | radiation sources | energy deposition | energy deposition | dose calculations | dose calculations | principles of radiation protection | principles of radiation protection | ionizing | ionizing | radiation | radiation | medicine | medicine | industry | industry | science | science | environmental studies | environmental studies | natural radiation sources | natural radiation sources | man-made radiation | man-made radiation | radiation protection | radiation protection | material interaction | material interaction | biological material | biological material | radiation therapy | radiation therapy | medical imaging | medical imaging | non-destructive evaluation | non-destructive evaluation | food irradiation | food irradiation | radionuclide dating | radionuclide dating | well-logging | well-logging

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.01 Introduction to Ionizing Radiation (MIT) 22.01 Introduction to Ionizing Radiation (MIT)

Description

This course provides an introduction to the basic properties of ionizing radiations and their uses in medicine, industry, science, and environmental studies. We will discuss natural and man-made radiation sources, energy deposition and dose calculations, and various physical, chemical, and biological processes and effects of radiation, with examples of their uses, and principles of radiation protection. This course provides an introduction to the basic properties of ionizing radiations and their uses in medicine, industry, science, and environmental studies. We will discuss natural and man-made radiation sources, energy deposition and dose calculations, and various physical, chemical, and biological processes and effects of radiation, with examples of their uses, and principles of radiation protection.

Subjects

ionizing radiation | ionizing radiation | natural radiation | natural radiation | man-made radiation | man-made radiation | energy deposition | energy deposition | dose calculations | dose calculations | radiation protection | radiation protection | radiation damage | radiation damage | DNA | DNA | cell survival curves | cell survival curves | radioactive decay | radioactive decay | beta decay | beta decay | gamma decay | gamma decay | radiological dating | radiological dating | radiation interactions | radiation interactions | radon | radon | medical imaging | medical imaging

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.55J Principles of Radiation Interactions (MIT) 22.55J Principles of Radiation Interactions (MIT)

Description

The central theme of this course is the interaction of radiation with biological material. The course is intended to provide a broad understanding of how different types of radiation deposit energy, including the creation and behavior of secondary radiations; of how radiation affects cells and why the different types of radiation have very different biological effects. Topics will include: the effects of radiation on biological systems including DNA damage; in vitro cell survival models; and in vivo mammalian systems. The course covers radiation therapy, radiation syndromes in humans and carcinogenesis. Environmental radiation sources on earth and in space, and aspects of radiation protection are also discussed. Examples from the current literature will be used to supplement lecture materi The central theme of this course is the interaction of radiation with biological material. The course is intended to provide a broad understanding of how different types of radiation deposit energy, including the creation and behavior of secondary radiations; of how radiation affects cells and why the different types of radiation have very different biological effects. Topics will include: the effects of radiation on biological systems including DNA damage; in vitro cell survival models; and in vivo mammalian systems. The course covers radiation therapy, radiation syndromes in humans and carcinogenesis. Environmental radiation sources on earth and in space, and aspects of radiation protection are also discussed. Examples from the current literature will be used to supplement lecture materi

Subjects

Interaction of radiation with biological material | Interaction of radiation with biological material | how different types of radiation deposit energy | how different types of radiation deposit energy | secondary radiations | secondary radiations | how radiation affects cells | how radiation affects cells | biological effects | biological effects | effects of radiation on biological systems | effects of radiation on biological systems | DNA damage | DNA damage | in vitro cell survival models | in vitro cell survival models | in vivo mammalian systems | in vivo mammalian systems | radiation therapy | radiation therapy | radiation syndromes in humans | radiation syndromes in humans | carcinogenesis | carcinogenesis | Environmental radiation sources | Environmental radiation sources | radiation protection | radiation protection | cells | cells | tissues | tissues | radiation interactions | radiation interactions | radiation chemistry | radiation chemistry | LET | LET | tracks | tracks | chromosome damags | chromosome damags | in vivo | in vivo | in vitro | in vitro | cell survival curves | cell survival curves | dose response | dose response | RBE | RBE | clustered damage | clustered damage | radiation response | radiation response | tumor kinetics | tumor kinetics | tumor radiobiology | tumor radiobiology | fractionation | fractionation | protons | protons | alpha particles | alpha particles | whole body exposure | whole body exposure | chronic exposure | chronic exposure | space | space | microbeams | microbeams | radon | radon | background radiation | background radiation | 22.55 | 22.55 | HST.560 | HST.560

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.01 Introduction to Ionizing Radiation (MIT) 22.01 Introduction to Ionizing Radiation (MIT)

Description

This course provides an introduction to the basic properties of ionizing radiations and their uses in medicine, industry, science, and environmental studies. We will discuss natural and man-made radiation sources, energy deposition and dose calculations, and various physical, chemical, and biological processes and effects of radiation, with examples of their uses, and principles of radiation protection. This course provides an introduction to the basic properties of ionizing radiations and their uses in medicine, industry, science, and environmental studies. We will discuss natural and man-made radiation sources, energy deposition and dose calculations, and various physical, chemical, and biological processes and effects of radiation, with examples of their uses, and principles of radiation protection.

Subjects

ionizing radiation | ionizing radiation | natural radiation | natural radiation | man-made radiation | man-made radiation | energy deposition | energy deposition | dose calculations | dose calculations | radiation protection | radiation protection | radiation damage | radiation damage | DNA | DNA | cell survival curves | cell survival curves | radioactive decay | radioactive decay | beta decay | beta decay | gamma decay | gamma decay | radiological dating | radiological dating | radiation interactions | radiation interactions | radon | radon | medical imaging | medical imaging

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.01 Introduction to Nuclear Engineering and Ionizing Radiation (MIT) 22.01 Introduction to Nuclear Engineering and Ionizing Radiation (MIT)

Description

This course provides an introduction to nuclear science and its engineering applications. It describes basic nuclear models, radioactivity, nuclear reactions and kinematics; covers the interaction of ionizing radiation with matter, with an emphasis on radiation detection, radiation shielding, and radiation effects on human health; and presents energy systems based on fission and fusion nuclear reactions, as well as industrial and medical applications of nuclear science. This course provides an introduction to nuclear science and its engineering applications. It describes basic nuclear models, radioactivity, nuclear reactions and kinematics; covers the interaction of ionizing radiation with matter, with an emphasis on radiation detection, radiation shielding, and radiation effects on human health; and presents energy systems based on fission and fusion nuclear reactions, as well as industrial and medical applications of nuclear science.

Subjects

ionizing radiation | ionizing radiation | natural radiation | natural radiation | half-life | half-life | radioactive decay | radioactive decay | dose calculation | dose calculation | radiation protection | radiation protection | radiation shielding | radiation shielding | hormesis | hormesis | nuclear power | nuclear power | nuclear energy | nuclear energy | biological effects of radiation | biological effects of radiation | food irradiation | food irradiation | radiation risk | radiation risk | radioactive dating | radioactive dating

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.01 Introduction to Ionizing Radiation (MIT)

Description

This course is an introduction to basic properties of ionizing radiations and their uses in medicine, industry, science, and environmental studies. Discusses natural and man-made radiation sources, energy deposition and dose calculations, various physical, chemical, and biological processes and effects of radiation with examples of their uses, and principles of radiation protection. Term paper and oral presentation of paper required.This course was originally developed by Dr. Jacquelyn Yanch.  As such, significant portions of the materials presented here were derived from her work.

Subjects

ionizing radiations | radiation sources | energy deposition | dose calculations | principles of radiation protection | ionizing | radiation | medicine | industry | science | environmental studies | natural radiation sources | man-made radiation | radiation protection | material interaction | biological material | radiation therapy | medical imaging | non-destructive evaluation | food irradiation | radionuclide dating | well-logging

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.55J Principles of Radiation Interactions (MIT)

Description

The central theme of this course is the interaction of radiation with biological material. The course is intended to provide a broad understanding of how different types of radiation deposit energy, including the creation and behavior of secondary radiations; of how radiation affects cells and why the different types of radiation have very different biological effects. Topics will include: the effects of radiation on biological systems including DNA damage; in vitro cell survival models; and in vivo mammalian systems. The course covers radiation therapy, radiation syndromes in humans and carcinogenesis. Environmental radiation sources on earth and in space, and aspects of radiation protection are also discussed. Examples from the current literature will be used to supplement lecture materi

Subjects

Interaction of radiation with biological material | how different types of radiation deposit energy | secondary radiations | how radiation affects cells | biological effects | effects of radiation on biological systems | DNA damage | in vitro cell survival models | in vivo mammalian systems | radiation therapy | radiation syndromes in humans | carcinogenesis | Environmental radiation sources | radiation protection | cells | tissues | radiation interactions | radiation chemistry | LET | tracks | chromosome damags | in vivo | in vitro | cell survival curves | dose response | RBE | clustered damage | radiation response | tumor kinetics | tumor radiobiology | fractionation | protons | alpha particles | whole body exposure | chronic exposure | space | microbeams | radon | background radiation | 22.55 | HST.560

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.01 Introduction to Nuclear Engineering and Ionizing Radiation (MIT)

Description

This course provides an introduction to nuclear science and its engineering applications. It describes basic nuclear models, radioactivity, nuclear reactions and kinematics; covers the interaction of ionizing radiation with matter, with an emphasis on radiation detection, radiation shielding, and radiation effects on human health; and presents energy systems based on fission and fusion nuclear reactions, as well as industrial and medical applications of nuclear science.

Subjects

ionizing radiation | natural radiation | half-life | radioactive decay | dose calculation | radiation protection | radiation shielding | hormesis | nuclear power | nuclear energy | biological effects of radiation | food irradiation | radiation risk | radioactive dating

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.55J Principles of Radiation Interactions (MIT)

Description

The central theme of this course is the interaction of radiation with biological material. The course is intended to provide a broad understanding of how different types of radiation deposit energy, including the creation and behavior of secondary radiations; of how radiation affects cells and why the different types of radiation have very different biological effects. Topics will include: the effects of radiation on biological systems including DNA damage; in vitro cell survival models; and in vivo mammalian systems. The course covers radiation therapy, radiation syndromes in humans and carcinogenesis. Environmental radiation sources on earth and in space, and aspects of radiation protection are also discussed. Examples from the current literature will be used to supplement lecture materi

Subjects

Interaction of radiation with biological material | how different types of radiation deposit energy | secondary radiations | how radiation affects cells | biological effects | effects of radiation on biological systems | DNA damage | in vitro cell survival models | in vivo mammalian systems | radiation therapy | radiation syndromes in humans | carcinogenesis | Environmental radiation sources | radiation protection | cells | tissues | radiation interactions | radiation chemistry | LET | tracks | chromosome damags | in vivo | in vitro | cell survival curves | dose response | RBE | clustered damage | radiation response | tumor kinetics | tumor radiobiology | fractionation | protons | alpha particles | whole body exposure | chronic exposure | space | microbeams | radon | background radiation | 22.55 | HST.560

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.01 Introduction to Ionizing Radiation (MIT)

Description

This course provides an introduction to the basic properties of ionizing radiations and their uses in medicine, industry, science, and environmental studies. We will discuss natural and man-made radiation sources, energy deposition and dose calculations, and various physical, chemical, and biological processes and effects of radiation, with examples of their uses, and principles of radiation protection.

Subjects

ionizing radiation | natural radiation | man-made radiation | energy deposition | dose calculations | radiation protection | radiation damage | DNA | cell survival curves | radioactive decay | beta decay | gamma decay | radiological dating | radiation interactions | radon | medical imaging

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata