Searching for recombination : 17 results found | RSS Feed for this search

1

7.03 Genetics (MIT) 7.03 Genetics (MIT)

Description

The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease. The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subjects

Population genetics | Population genetics | selection | selection | mutation | mutation | recombination | recombination | genomes | genomes | chromosomes | chromosomes | genes | genes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT) 7.28 Molecular Biology (MIT)

Description

Molecular Biology - Detailed analysis of the biochemical mechanisms that control the maintenance, expression and evolution of prokaryotic and eukaryotic genomes.Topics covered in 7.28 lectures and readings of primary literature include:DNA replication,DNA repair,genetic recombination,gene expression,RNA processing, andtranslation.The logic of experimental design and data analysis is emphasized. Presentations include lectures, reading assignments and group discussions. Writing assignments, Problem Sets (ungraded) and review sessions also contribute to the course content. Molecular Biology - Detailed analysis of the biochemical mechanisms that control the maintenance, expression and evolution of prokaryotic and eukaryotic genomes.Topics covered in 7.28 lectures and readings of primary literature include:DNA replication,DNA repair,genetic recombination,gene expression,RNA processing, andtranslation.The logic of experimental design and data analysis is emphasized. Presentations include lectures, reading assignments and group discussions. Writing assignments, Problem Sets (ungraded) and review sessions also contribute to the course content.

Subjects

genetic recombination | genetic recombination | DNA replication | DNA replication | gene regulation | gene regulation | molecules | molecules

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 Directed Evolution: Engineering Biocatalysts (MIT) 7.344 Directed Evolution: Engineering Biocatalysts (MIT)

Description

Directed evolution has been used to produce enzymes with many unique properties. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current Directed evolution has been used to produce enzymes with many unique properties. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current

Subjects

evolution | evolution | biocatalyst | biocatalyst | mutation | mutation | library | library | recombination | recombination | directed evolution | directed evolution | enzyme | enzyme | point mutation | point mutation | mutagenesis | mutagenesis | DNA | DNA | gene | gene | complementation | complementation | affinity | affinity | phage | phage | ribosome display | ribosome display | yeast surface display | yeast surface display | bacterial cell surface display | bacterial cell surface display | IVC | IVC | FACS | FACS | active site | active site

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT) 7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized. This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | molecular biology | biochemical mechanisms | biochemical mechanisms | gene expression | gene expression | evolution | evolution | prokaryotic genome | prokaryotic genome | eukaryotic genomes | eukaryotic genomes | gene regulation | gene regulation | DNA replication | DNA replication | genetic recombination | genetic recombination | RNA processing | RNA processing | translation | translation | genome | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.902 Astrophysics II (MIT) 8.902 Astrophysics II (MIT)

Description

This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation. This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation.

Subjects

Galactic dynamics | Galactic dynamics | potential theory | potential theory | orbits | orbits | collisionless Boltzmann equations | collisionless Boltzmann equations | Galaxy interactions | Galaxy interactions | Groups and clusters | Groups and clusters | dark matter | dark matter | Intergalactic medium | Intergalactic medium | x-ray clusters | x-ray clusters | Active galactic nuclei | Active galactic nuclei | unified models | unified models | black hole accretion | black hole accretion | radio and optical jets | radio and optical jets | Homogeneity and isotropy | Homogeneity and isotropy | redshift | redshift | galaxy distance ladder | galaxy distance ladder | Newtonian cosmology | Newtonian cosmology | Roberston-Walker models and cosmography | Roberston-Walker models and cosmography | Early universe | Early universe | primordial nucleosynthesis | primordial nucleosynthesis | recombination | recombination | Cosmic microwave background radiation | Cosmic microwave background radiation | Large-scale structure | Large-scale structure | galaxy formation | galaxy formation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Human Genetics

Description

Professor Peter Donnelly tells us how genetics helps us to understand common diseases and develop new drugs. Understanding which variations in our DNA affect susceptibility to diseases can provide new insights into the disease process and lead to new treatments. Professor Peter Donnelly leads large collaborative human genetic studies, and his group develops and applies statistical methods to extract maximal information from the large datasets generated by genomic studies. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

recombination | genome-wide association study (GWAS) | Statistical Genetics | population genetics | recombination | genome-wide association study (GWAS) | Statistical Genetics | population genetics

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Human Genetics

Description

Professor Peter Donnelly tells us how genetics helps us to understand common diseases and develop new drugs. Understanding which variations in our DNA affect susceptibility to diseases can provide new insights into the disease process and lead to new treatments. Professor Peter Donnelly leads large collaborative human genetic studies, and his group develops and applies statistical methods to extract maximal information from the large datasets generated by genomic studies. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

recombination | genome-wide association study (GWAS) | Statistical Genetics | population genetics | recombination | genome-wide association study (GWAS) | Statistical Genetics | population genetics

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.345 The Science of Sperm (MIT) 7.345 The Science of Sperm (MIT)

Description

Sperm are tiny, haploid cells with a supremely important job: They deliver the paternal genome to the egg, helping create a zygote that develops into a new individual. For a human male, however, only a small fraction of the sperm produced will ever fertilize an egg. Sperm thus experience intense selective pressure: They must compete against each other, navigate a foreign environment in the female reproductive tract, and interact specifically and appropriately with the surface of the egg. These selective pressures can drive extreme changes in morphology and gene function over short evolutionary time scales, resulting in amazing diversity among species. In this course, we will explore the ways in which these unique evolutionary forces contribute to incredible specializations of sperm form an Sperm are tiny, haploid cells with a supremely important job: They deliver the paternal genome to the egg, helping create a zygote that develops into a new individual. For a human male, however, only a small fraction of the sperm produced will ever fertilize an egg. Sperm thus experience intense selective pressure: They must compete against each other, navigate a foreign environment in the female reproductive tract, and interact specifically and appropriately with the surface of the egg. These selective pressures can drive extreme changes in morphology and gene function over short evolutionary time scales, resulting in amazing diversity among species. In this course, we will explore the ways in which these unique evolutionary forces contribute to incredible specializations of sperm form an

Subjects

sperm | sperm | sperm biology | sperm biology | haploid cells | haploid cells | sperm development | sperm development | selective forces | selective forces | meiotic cell division | meiotic cell division | protamines | protamines | fertilization | fertilization | evolutionary analysis | evolutionary analysis | reproductive biology | reproductive biology | spermatogenesis | spermatogenesis | spermatogenic cycle | spermatogenic cycle | germline mutations | germline mutations | FGFR2 gene | FGFR2 gene | germ line selection | germ line selection | Fragile X syndrome | Fragile X syndrome | Meiotic recombination | Meiotic recombination | sperm bundling | sperm bundling | Sperm Cooperation | Sperm Cooperation | sperm competition | sperm competition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | biochemical mechanisms | gene expression | evolution | prokaryotic genome | eukaryotic genomes | gene regulation | DNA replication | genetic recombination | RNA processing | translation | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | biochemical mechanisms | gene expression | evolution | prokaryotic genome | eukaryotic genomes | gene regulation | DNA replication | genetic recombination | RNA processing | translation | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | biochemical mechanisms | gene expression | evolution | prokaryotic genome | eukaryotic genomes | gene regulation | DNA replication | genetic recombination | RNA processing | translation | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.03 Genetics (MIT)

Description

The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subjects

Population genetics | selection | mutation | recombination | genomes | chromosomes | genes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

Molecular Biology - Detailed analysis of the biochemical mechanisms that control the maintenance, expression and evolution of prokaryotic and eukaryotic genomes.Topics covered in 7.28 lectures and readings of primary literature include:DNA replication,DNA repair,genetic recombination,gene expression,RNA processing, andtranslation.The logic of experimental design and data analysis is emphasized. Presentations include lectures, reading assignments and group discussions. Writing assignments, Problem Sets (ungraded) and review sessions also contribute to the course content.

Subjects

genetic recombination | DNA replication | gene regulation | molecules

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.345 The Science of Sperm (MIT)

Description

Sperm are tiny, haploid cells with a supremely important job: They deliver the paternal genome to the egg, helping create a zygote that develops into a new individual. For a human male, however, only a small fraction of the sperm produced will ever fertilize an egg. Sperm thus experience intense selective pressure: They must compete against each other, navigate a foreign environment in the female reproductive tract, and interact specifically and appropriately with the surface of the egg. These selective pressures can drive extreme changes in morphology and gene function over short evolutionary time scales, resulting in amazing diversity among species. In this course, we will explore the ways in which these unique evolutionary forces contribute to incredible specializations of sperm form an

Subjects

sperm | sperm biology | haploid cells | sperm development | selective forces | meiotic cell division | protamines | fertilization | evolutionary analysis | reproductive biology | spermatogenesis | spermatogenic cycle | germline mutations | FGFR2 gene | germ line selection | Fragile X syndrome | Meiotic recombination | sperm bundling | Sperm Cooperation | sperm competition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 Directed Evolution: Engineering Biocatalysts (MIT)

Description

Directed evolution has been used to produce enzymes with many unique properties. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current

Subjects

evolution | biocatalyst | mutation | library | recombination | directed evolution | enzyme | point mutation | mutagenesis | DNA | gene | complementation | affinity | phage | ribosome display | yeast surface display | bacterial cell surface display | IVC | FACS | active site

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | biochemical mechanisms | gene expression | evolution | prokaryotic genome | eukaryotic genomes | gene regulation | DNA replication | genetic recombination | RNA processing | translation | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.902 Astrophysics II (MIT)

Description

This is the second course in a two-semester sequence on astrophysics. Topics include galactic dynamics, groups and clusters on galaxies, phenomenological cosmology, Newtonian cosmology, Roberston-Walker models, and galaxy formation.

Subjects

Galactic dynamics | potential theory | orbits | collisionless Boltzmann equations | Galaxy interactions | Groups and clusters | dark matter | Intergalactic medium | x-ray clusters | Active galactic nuclei | unified models | black hole accretion | radio and optical jets | Homogeneity and isotropy | redshift | galaxy distance ladder | Newtonian cosmology | Roberston-Walker models and cosmography | Early universe | primordial nucleosynthesis | recombination | Cosmic microwave background radiation | Large-scale structure | galaxy formation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata