Searching for recrystallisation : 39 results found | RSS Feed for this search

1 2

Cu 70, Zn 30 (wt%), partial recrystallisation - annealing twins

Description

This sample was annealed and 50% cold rolled, with subsequent annealing for 30 minutes at 600 °C. This has caused partial recrystallisation to occur creating new dislocation-free grains with some annealing twins. The temperature is too low for significant grain growth preventing complete recrystallisation.

Subjects

alloy | annealing | brass | copper | metal | partial recrystallisation | recrystallisation | twinning | zinc | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Cu 70, Zn 30 (wt%), partial recrystallisation - annealing twins

Description

This sample was annealed and 50% cold rolled, with subsequent annealing for 30 minutes at 600 °C. This has caused partial recrystallisation to occur creating new dislocation-free grains with some annealing twins. The temperature is too low for significant grain growth preventing complete recrystallisation.

Subjects

alloy | annealing | brass | copper | metal | partial recrystallisation | recrystallisation | twinning | zinc | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Cu 70, Zn 30 (wt%), partial recrystallisation - annealing twins

Description

This sample was annealed and 50% cold rolled, with subsequent annealing for 30 minutes at 600 C. This has caused partial recrystallisation to occur creating new dislocation-free grains with some annealing twins. The temperature is too low for significant grain growth preventing complete recrystallisation.

Subjects

alloy | annealing | brass | copper | metal | partial recrystallisation | recrystallisation | twinning | zinc | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Cu 70, Zn 30 (wt%), partial recrystallisation - annealing twins

Description

This sample was annealed and 50% cold rolled, with subsequent annealing for 30 minutes at 600 C. This has caused partial recrystallisation to occur creating new dislocation-free grains with some annealing twins. The temperature is too low for significant grain growth preventing complete recrystallisation.

Subjects

alloy | annealing | brass | copper | metal | partial recrystallisation | recrystallisation | twinning | zinc | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Normalised carbon steel

Description

Low carbon steel with a microstructure consisting mostly of ferrite with the darker pearlite regions around the ferrite grains. Upon cooling the steel the ferrite forms initially, either on austenite grain boundaries or inclusions. This causes carbon to be partitioned into the austenite. Eventually the remaining austenite will be at the eutectoid condition and the transformation to pearlite will then take place. This sample has been normalised, removing the directionality caused by casting

Subjects

alloy | carbon | eutectoid reaction | iron | metal | normalising | pearlite | recrystallisation | steel | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Normalised carbon steel

Description

Low carbon steel with a microstructure consisting mostly of ferrite with the darker pearlite regions around the ferrite grains. Upon cooling the steel the ferrite forms initially, either on austenite grain boundaries or inclusions. This causes carbon to be partitioned into the austenite. Eventually the remaining austenite will be at the eutectoid condition and the transformation to pearlite will then take place. This sample has been normalised, removing the directionality caused by casting.

Subjects

alloy | carbon | eutectoid reaction | iron | metal | pearlite | recrystallisation | steel | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Austenitic stainless steel

Description

This is a transmission electron micrograph taken at 200 kV, from a thin foil sample of "302AA" austenitic stainless steel. The sample was cold-deformed by rolling and then annealed at 704 °C for one hour. The image shows a recrystallised grain which is relatively free of dislocations, surrounded by a deformed matrix which has a high dislocation density. The recrystallised grain contains annealing twins (parallel bands with different contrast). Source: http://www.msm.cam.ac.uk/phase-trans/abstracts/annealing.twin.html.

Subjects

alloy | annealing twins | austenite | dislocation | grain | metal | recrystallisation | stainless steel | steel | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Austenitic stainless steel

Description

This is a transmission electron micrograph taken at 200 kV, from a thin foil sample of "302AA" austenitic stainless steel. The sample was cold-deformed by rolling and then annealed at 704 °C for one hour. The image shows recrystallised grains which which show uniform contrast because they are relatively free of dislocations, surrounded by a deformed matrix which has a high dislocation density. The recrystallised grain contains annealing twins (parallel bands with different contrast. The steps at the top left-hand corner are simply steps in annealing twin boundaries.Source: http://www.msm.cam.ac.uk/phase-trans/abstracts/annealing.twin.html.

Subjects

alloy | annealing twins | austenite | carbon | dislocation | grain | iron | metal | recrystallisation | stainless steel | steel | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Austenitic stainless steel

Description

This is a transmission electron micrograph taken at 200 kV, from a thin foil sample of "302AA" austenitic stainless steel. The sample was cold-deformed by rolling and then annealed at 704 °C for one hour. The image shows a beautiful picture of annealing twins. Notice how the ends of annealing twins are flat, the shape being determined by a minimisation of interfacial energy. Mechanical twins, by contrast, are lenticular (lens like) with sharply pointed ends to minimise the strain energy due to the twinning shear. Annealing twins do not cause any deformation so strain energy minimisation is not an issue. This is also the reason why there is no strain field contrast visible at the tips of the annealing twins. Source: http://www.msm.cam.ac.uk/phase-trans/abstracts/annealing.twin.html.

Subjects

alloy | annealing twins | austenite | carbon | dislocation | grain | iron | metal | recrystallisation | stainless steel | steel | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Austenitic stainless steel

Description

This is a transmission electron micrograph taken at 200 kV, from a thin foil sample of "302AA" austenitic stainless steel. The sample was cold-deformed by rolling and then annealed at 704 °C for one hour. The image shows a mixture of deformed and recrystallised grains. Source: http://www.msm.cam.ac.uk/phase-trans/abstracts/recryst.html.

Subjects

alloy | annealing twins | austenite | carbon | dislocation | grain | iron | metal | recrystallisation | stainless steel | steel | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Austenitic stainless steel

Description

This is a transmission electron micrograph taken at 200 kV, from a thin foil sample of "302AA" austenitic stainless steel. The sample was cold-deformed by rolling and then annealed at 704 °C for one hour. The image shows a mixture of recrystallised and deformed grains. There are some stacking faults (ribbon like contrast) in the recrystallised grains; austenitic stainless steels have a relatively low stacking fault energy. Source: http://www.msm.cam.ac.uk/phase-trans/abstracts/recryst.html.

Subjects

alloy | annealing twins | austenite | carbon | dislocation | grain | iron | metal | recrystallisation | stainless steel | steel | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

C.

Description

This micrograph shows the grain structure of a roll-bonded aluminium alloy diffusion couple annealed for 30 minutes at 600C. The upper half of the couple is Al-0.5Fe-1.0Mn (wt.%), the lower half is Al-1.0Si (wt.%). Annealing has recrystallised the microstructure. The Al-Fe-Mn alloy has many intermetallic particles (the dark phase). These help create recrystallisation nuclei, hence this alloy has a high density of small grains relative to the Al-Si alloy.The Barker's etch produces a thick oxide layer on the grains of aluminium (anodising). When viewed in cross-polarised light, interference in the oxide layer produces colours which depend on grain orientation, hence the grain structure is imaged. Strain of the aluminium matrix during rolling around the intermetallic particles in the Al-Fe

Subjects

alloy | aluminium | diffusion couple | metal | recrystallisation | roll-bonding | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

C.

Description

This micrograph shows the grain structure of a roll-bonded aluminium alloy diffusion couple annealed for 60 minutes at 600C. The upper half of the couple is Al-0.5Fe-1.0Mn (wt.%), the lower half is Al-1.0Si (wt.%). Annealing has recrystallised the microstructure. The Al-Fe-Mn alloy has many intermetallic particles (the dark phase). These help create recrystallisation nuclei, hence this alloy has a high density of small grains relative to the Al-Si alloy.The Barker's etch produces a thick oxide layer on the grains of aluminium (anodising). When viewed in cross-polarised light, interference in the oxide layer produces colours which depend on grain orientation, hence the grain structure is imaged. Strain of the aluminium matrix during rolling around the intermetallic particles in the Al-Fe

Subjects

alloy | aluminium | diffusion couple | metal | recrystallisation | roll-bonding | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1201: Introduction to Aluminium as an Engineering Material

Description

This lecture provides an introduction to metallurgical concepts necessary to understand how structural features of aluminium alloys are influenced by alloy composition, processing and heat treatment, and the basic affects of these parameters on the mechanical properties, and hence engineering applications, of the alloys. It is assumed that the reader has some elementary knowledge of physics, chemistry and mathematics.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | alloy | atomic structure | crystal defects | crystal structure | crystals and atomic bonding | dislocations | grain growth | mechanical properties | microstructure | phase transformations | physical properties | plastic deformation | recrystallisation | slip | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Nitration of methylbenzoate practical

Description

Student instruction sheet and Technicians apparatus and chemicals list.

Subjects

ukoer | sfsoer | chemistry | outreach | nitration | aromatic | electrophilic | substitution | recrystallisation | Physical sciences | F000

License

Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-nd/2.0/uk/ http://creativecommons.org/licenses/by-nc-nd/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Aspirin practical

Description

Student instruction sheet and Technicians apparatus and chemicals list.

Subjects

ukoer | sfsoer | chemistry | outreach | aspirin | organic | acetylation | recrystallisation | Physical sciences | F000

License

Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-nd/2.0/uk/ http://creativecommons.org/licenses/by-nc-nd/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Benzocaine practicals

Description

Student instruction sheet and Technicians apparatus and chemicals list for each route.

Subjects

ukoer | sfsoer | chemistry | outreach | benzocaine | organic | esterification | reduction | reflux | solvent extraction | recrystallisation | Physical sciences | F000

License

Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-nd/2.0/uk/ http://creativecommons.org/licenses/by-nc-nd/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Normalised carbon steel

Description

Low carbon steel with a microstructure consisting mostly of ferrite with the darker pearlite regions around the ferrite grains. Upon cooling the steel the ferrite forms initially, either on austenite grain boundaries or inclusions. This causes carbon to be partitioned into the austenite. Eventually the remaining austenite will be at the eutectoid condition and the transformation to pearlite will then take place. This sample has been normalised, removing the directionality caused by casting

Subjects

alloy | carbon | eutectoid reaction | iron | metal | normalising | pearlite | recrystallisation | steel | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Normalised carbon steel

Description

Low carbon steel with a microstructure consisting mostly of ferrite with the darker pearlite regions around the ferrite grains. Upon cooling the steel the ferrite forms initially, either on austenite grain boundaries or inclusions. This causes carbon to be partitioned into the austenite. Eventually the remaining austenite will be at the eutectoid condition and the transformation to pearlite will then take place. This sample has been normalised, removing the directionality caused by casting.

Subjects

alloy | carbon | eutectoid reaction | iron | metal | pearlite | recrystallisation | steel | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Austenitic stainless steel

Description

This is a transmission electron micrograph taken at 200 kV, from a thin foil sample of "302AA" austenitic stainless steel. The sample was cold-deformed by rolling and then annealed at 704 C for one hour. The image shows a recrystallised grain which is relatively free of dislocations, surrounded by a deformed matrix which has a high dislocation density. The recrystallised grain contains annealing twins (parallel bands with different contrast). Source: http://www.msm.cam.ac.uk/phase-trans/abstracts/annealing.twin.html.

Subjects

alloy | annealing twins | austenite | dislocation | grain | metal | recrystallisation | stainless steel | steel | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Austenitic stainless steel

Description

This is a transmission electron micrograph taken at 200 kV, from a thin foil sample of "302AA" austenitic stainless steel. The sample was cold-deformed by rolling and then annealed at 704 C for one hour. The image shows recrystallised grains which which show uniform contrast because they are relatively free of dislocations, surrounded by a deformed matrix which has a high dislocation density. The recrystallised grain contains annealing twins (parallel bands with different contrast. The steps at the top left-hand corner are simply steps in annealing twin boundaries.Source: http://www.msm.cam.ac.uk/phase-trans/abstracts/annealing.twin.html.

Subjects

alloy | annealing twins | austenite | carbon | dislocation | grain | iron | metal | recrystallisation | stainless steel | steel | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Austenitic stainless steel

Description

This is a transmission electron micrograph taken at 200 kV, from a thin foil sample of "302AA" austenitic stainless steel. The sample was cold-deformed by rolling and then annealed at 704 C for one hour. The image shows a beautiful picture of annealing twins. Notice how the ends of annealing twins are flat, the shape being determined by a minimisation of interfacial energy. Mechanical twins, by contrast, are lenticular (lens like) with sharply pointed ends to minimise the strain energy due to the twinning shear. Annealing twins do not cause any deformation so strain energy minimisation is not an issue. This is also the reason why there is no strain field contrast visible at the tips of the annealing twins. Source: http://www.msm.cam.ac.uk/phase-trans/abstracts/annealing.twin.html.

Subjects

alloy | annealing twins | austenite | carbon | dislocation | grain | iron | metal | recrystallisation | stainless steel | steel | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Austenitic stainless steel

Description

This is a transmission electron micrograph taken at 200 kV, from a thin foil sample of "302AA" austenitic stainless steel. The sample was cold-deformed by rolling and then annealed at 704 C for one hour. The image shows a mixture of deformed and recrystallised grains. Source: http://www.msm.cam.ac.uk/phase-trans/abstracts/recryst.html.

Subjects

alloy | annealing twins | austenite | carbon | dislocation | grain | iron | metal | recrystallisation | stainless steel | steel | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Austenitic stainless steel

Description

This is a transmission electron micrograph taken at 200 kV, from a thin foil sample of "302AA" austenitic stainless steel. The sample was cold-deformed by rolling and then annealed at 704 C for one hour. The image shows a mixture of recrystallised and deformed grains. There are some stacking faults (ribbon like contrast) in the recrystallised grains; austenitic stainless steels have a relatively low stacking fault energy. Source: http://www.msm.cam.ac.uk/phase-trans/abstracts/recryst.html.

Subjects

alloy | annealing twins | austenite | carbon | dislocation | grain | iron | metal | recrystallisation | stainless steel | steel | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Extruded aluminium

Description

Nucleation of the recrystallized grain structure is very sluggish in this material, but growth rates are rapid, giving rise to a coarse microstructure.

Subjects

alloy | aluminium | annealing | cold swaging | elongation | extrusion | metal | recrystallisation | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata