Searching for recursive : 106 results found | RSS Feed for this search

RES.6-008 Digital Signal Processing (MIT) RES.6-008 Digital Signal Processing (MIT)

Description

Includes audio/video content: AV lectures. This course was developed in 1987 by the MIT Center for Advanced Engineering Studies. It was designed as a distance-education course for engineers and scientists in the workplace. Advances in integrated circuit technology have had a major impact on the technical areas to which digital signal processing techniques and hardware are being applied. A thorough understanding of digital signal processing fundamentals and techniques is essential for anyone whose work is concerned with signal processing applications. Digital Signal Processing begins with a discussion of the analysis and representation of discrete-time signal systems, including discrete-time convolution, difference equations, the z-transform, and the discrete-time Fourier transform. Emphasi Includes audio/video content: AV lectures. This course was developed in 1987 by the MIT Center for Advanced Engineering Studies. It was designed as a distance-education course for engineers and scientists in the workplace. Advances in integrated circuit technology have had a major impact on the technical areas to which digital signal processing techniques and hardware are being applied. A thorough understanding of digital signal processing fundamentals and techniques is essential for anyone whose work is concerned with signal processing applications. Digital Signal Processing begins with a discussion of the analysis and representation of discrete-time signal systems, including discrete-time convolution, difference equations, the z-transform, and the discrete-time Fourier transform. EmphasiSubjects

discrete-time signals and systems | discrete-time signals and systems | convolution difference equations | convolution difference equations | z-transform | z-transform | digital network structure | digital network structure | recursive infinite impulse response | recursive infinite impulse response | nonrecursive finite impulse response | nonrecursive finite impulse response | digital filter design | digital filter design | fast Fourier transform algorithm | fast Fourier transform algorithm | discrete Fourier transform | discrete Fourier transformLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT) 6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semest This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semestSubjects

discrete time signals and systems | discrete time signals and systems | discrete-time processing of continuous-time signals | discrete-time processing of continuous-time signals | decimation | decimation | interpolation | interpolation | sampling rate conversion | sampling rate conversion | Flowgraph structures | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | linear prediction | Discrete Fourier transform | Discrete Fourier transform | FFT algorithm | FFT algorithm | Short-time Fourier analysis and filter banks | Short-time Fourier analysis and filter banks | Multirate techniques | Multirate techniques | Hilbert transforms | Hilbert transforms | Cepstral analysis | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata14.462 Advanced Macroeconomics II (MIT) 14.462 Advanced Macroeconomics II (MIT)

Description

14.462 is the second semester of the second-year Ph.D. macroeconomics sequence. The course is intended to introduce the students, not only to particular areas of current research, but also to some very useful analytical tools. It covers a selection of topics that varies from year to year. Recent topics include: Growth and Fluctuations Heterogeneity and Incomplete Markets Optimal Fiscal Policy Time Inconsistency Reputation Coordination Games and Macroeconomic Complementarities Information 14.462 is the second semester of the second-year Ph.D. macroeconomics sequence. The course is intended to introduce the students, not only to particular areas of current research, but also to some very useful analytical tools. It covers a selection of topics that varies from year to year. Recent topics include: Growth and Fluctuations Heterogeneity and Incomplete Markets Optimal Fiscal Policy Time Inconsistency Reputation Coordination Games and Macroeconomic Complementarities InformationSubjects

macroeconomics research; analytical tools; analysis; endogenous growth; coordintation; incomplete markets; technolgy; distribution; employment; intellectual property rights; bounded rationality; demographics; complementarities; amplification; recursive equilibria; uncertainty; morris; shin; global games; policy; price; aggregation; social learning; dynamic adjustment; business cycle; heterogeneous agents; savings; utility; aiyagari; steady state; krusell; smith; idiosyncratic investment risk | macroeconomics research; analytical tools; analysis; endogenous growth; coordintation; incomplete markets; technolgy; distribution; employment; intellectual property rights; bounded rationality; demographics; complementarities; amplification; recursive equilibria; uncertainty; morris; shin; global games; policy; price; aggregation; social learning; dynamic adjustment; business cycle; heterogeneous agents; savings; utility; aiyagari; steady state; krusell; smith; idiosyncratic investment risk | macroeconomics research | macroeconomics research | analytical tools | analytical tools | analysis | analysis | endogenous growth | endogenous growth | coordintation | coordintation | incomplete markets | incomplete markets | technolgy | technolgy | distribution | distribution | employment | employment | intellectual property rights | intellectual property rights | bounded rationality | bounded rationality | demographics | demographics | complementarities | complementarities | amplification | amplification | recursive equilibria | recursive equilibria | uncertainty | uncertainty | morris | morris | shin | shin | global games | global games | policy | policy | price | price | aggregation | aggregation | social learning | social learning | dynamic adjustment | dynamic adjustment | business cycle | business cycle | heterogeneous agents | heterogeneous agents | savings | savings | utility | utility | aiyagari | aiyagari | steady state | steady state | krusell | krusell | smith | smith | idiosyncratic investment risk | idiosyncratic investment risk | growth | growth | fluctuations | fluctuations | heterogeneity | heterogeneity | optimal fiscal policy | optimal fiscal policy | time inconsistency | time inconsistency | reputation | reputation | information | information | coordination games | coordination gamesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is offered to undergraduates and introduces basic mathematical models of computation and the finite representation of infinite objects. The course is slower paced than 6.840J/18.404J. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems. This course is offered to undergraduates and introduces basic mathematical models of computation and the finite representation of infinite objects. The course is slower paced than 6.840J/18.404J. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems.Subjects

automata | automata | computability | computability | complexity | complexity | mathematical models | mathematical models | computation | computation | finite representation | finite representation | infinite objects | infinite objects | finite automata | finite automata | regular languages | regular languages | context-free languages | context-free languages | Turing machines | Turing machines | partial recursive functions | partial recursive functions | Church's Thesis | Church's Thesis | undecidability | undecidability | reducibility | reducibility | completeness | completeness | time complexity | time complexity | NP-completeness | NP-completeness | probabilistic computation | probabilistic computation | interactive proof systems | interactive proof systems | 6.045 | 6.045 | 18.400 | 18.400License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.404J Theory of Computation (MIT) 18.404J Theory of Computation (MIT)

Description

A more extensive and theoretical treatment of the material in 18.400J, Automata, Computability, and Complexity, emphasizing computability and computational complexity theory. Regular and context-free languages. Decidable and undecidable problems, reducibility, recursive function theory. Time and space measures on computation, completeness, hierarchy theorems, inherently complex problems, oracles, probabilistic computation, and interactive proof systems. A more extensive and theoretical treatment of the material in 18.400J, Automata, Computability, and Complexity, emphasizing computability and computational complexity theory. Regular and context-free languages. Decidable and undecidable problems, reducibility, recursive function theory. Time and space measures on computation, completeness, hierarchy theorems, inherently complex problems, oracles, probabilistic computation, and interactive proof systems.Subjects

computability | computability | computational complexity theory | computational complexity theory | Regular and context-free languages | Regular and context-free languages | Decidable and undecidable problems | Decidable and undecidable problems | reducibility | reducibility | recursive function theory | recursive function theory | Time and space measures on computation | Time and space measures on computation | completeness | completeness | hierarchy theorems | hierarchy theorems | inherently complex problems | inherently complex problems | oracles | oracles | probabilistic computation | probabilistic computation | interactive proof systems | interactive proof systems | 18.404 | 18.404 | 6.840 | 6.840License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls filesSubjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course introduces basic mathematical models of computation and the finite representation of infinite objects. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems. This course introduces basic mathematical models of computation and the finite representation of infinite objects. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems.Subjects

automata | automata | computability | computability | complexity | complexity | mathematical models | mathematical models | computation | computation | finite representation | finite representation | infinite objects | infinite objects | finite automata | finite automata | regular languages | regular languages | context-free languages | context-free languages | Turing machines | Turing machines | partial recursive functions | partial recursive functions | Church's Thesis | Church's Thesis | undecidability | undecidability | reducibility | reducibility | completeness | completeness | time complexity | time complexity | NP-completeness | NP-completeness | probabilistic computation | probabilistic computation | interactive proof systems | interactive proof systems | 6.045 | 6.045 | 18.400 | 18.400License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawingsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science). This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science).Subjects

mathematical definitions | mathematical definitions | proofs and applicable methods | proofs and applicable methods | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | well-ordering | well-ordering | sets | sets | relations | relations | elementary graph theory | elementary graph theory | integer congruences | integer congruences | asymptotic notation and growth of functions | asymptotic notation and growth of functions | permutations and combinations | counting principles | permutations and combinations | counting principles | discrete probability | discrete probability | recursive definition | recursive definition | structural induction | structural induction | state machines and invariants | state machines and invariants | recurrences | recurrences | generating functions | generating functions | permutations and combinations | permutations and combinations | counting principles | counting principles | discrete mathematics | discrete mathematics | computer science | computer scienceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.435 System Identification (MIT) 6.435 System Identification (MIT)

Description

This course is offered to graduates and includes topics such as mathematical models of systems from observations of their behavior; time series, state-space, and input-output models; model structures, parametrization, and identifiability; non-parametric methods; prediction error methods for parameter estimation, convergence, consistency, and asymptotic distribution; relations to maximum likelihood estimation; recursive estimation; relation to Kalman filters; structure determination; order estimation; Akaike criterion; bounded but unknown noise model; and robustness and practical issues. This course is offered to graduates and includes topics such as mathematical models of systems from observations of their behavior; time series, state-space, and input-output models; model structures, parametrization, and identifiability; non-parametric methods; prediction error methods for parameter estimation, convergence, consistency, and asymptotic distribution; relations to maximum likelihood estimation; recursive estimation; relation to Kalman filters; structure determination; order estimation; Akaike criterion; bounded but unknown noise model; and robustness and practical issues.Subjects

mathematical models | mathematical models | time series | time series | state-space | state-space | input-output models | input-output models | model structures | model structures | parametrization | parametrization | identifiability | identifiability | non-parametric methods | non-parametric methods | prediction error | prediction error | parameter estimation | parameter estimation | convergence | convergence | consistency | consistency | andasymptotic distribution | andasymptotic distribution | maximum likelihood estimation | maximum likelihood estimation | recursive estimation | recursive estimation | Kalman filters | Kalman filters | structure determination | structure determination | order estimation | order estimation | Akaike criterion | Akaike criterion | bounded noise models | bounded noise models | robustness | robustnessLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability. This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability.Subjects

Elementary discrete mathematics for computer science and engineering | Elementary discrete mathematics for computer science and engineering | mathematical definitions | mathematical definitions | proofs and applicable methods | proofs and applicable methods | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | well-ordering | well-ordering | sets | sets | relations | relations | elementary graph theory | elementary graph theory | integer congruences | integer congruences | asymptotic notation and growth of functions | asymptotic notation and growth of functions | permutations and combinations | permutations and combinations | counting principles | counting principles | discrete probability | discrete probability | recursive definition | recursive definition | structural induction | structural induction | state machines and invariants | state machines and invariants | recurrences | recurrences | generating functions | generating functions | 6.042 | 6.042 | 18.062 | 18.062License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.404J Theory of Computation (MIT) 18.404J Theory of Computation (MIT)

Description

This graduate level course is more extensive and theoretical treatment of the material in Computability, and Complexity (6.045J / 18.400J). Topics include Automata and Language Theory, Computability Theory, and Complexity Theory. This graduate level course is more extensive and theoretical treatment of the material in Computability, and Complexity (6.045J / 18.400J). Topics include Automata and Language Theory, Computability Theory, and Complexity Theory.Subjects

Computability | computational complexity theory | Computability | computational complexity theory | Regular and context-free languages | Regular and context-free languages | Decidable and undecidable problems | reducibility | recursive function theory | Decidable and undecidable problems | reducibility | recursive function theory | Time and space measures on computation | completeness | hierarchy theorems | inherently complex problems | oracles | probabilistic computation | and interactive proof systems | Time and space measures on computation | completeness | hierarchy theorems | inherently complex problems | oracles | probabilistic computation | and interactive proof systemsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Wavelets are localized basis functions, good for representing short-time events. The coefficients at each scale are filtered and subsampled to give coefficients at the next scale. This is Mallat's pyramid algorithm for multiresolution, connecting wavelets to filter banks. Wavelets and multiscale algorithms for compression and signal/image processing are developed. Subject is project-based for engineering and scientific applications. Wavelets are localized basis functions, good for representing short-time events. The coefficients at each scale are filtered and subsampled to give coefficients at the next scale. This is Mallat's pyramid algorithm for multiresolution, connecting wavelets to filter banks. Wavelets and multiscale algorithms for compression and signal/image processing are developed. Subject is project-based for engineering and scientific applications.Subjects

Discrete-time filters | Discrete-time filters | convolution | convolution | Fourier transform | Fourier transform | owpass and highpass filters | owpass and highpass filters | Sampling rate change operations | Sampling rate change operations | upsampling and downsampling | upsampling and downsampling | ractional sampling | ractional sampling | interpolation | interpolation | Filter Banks | Filter Banks | time domain (Haar example) and frequency domain | time domain (Haar example) and frequency domain | conditions for alias cancellation and no distortion | conditions for alias cancellation and no distortion | perfect reconstruction | perfect reconstruction | halfband filters and possible factorizations | halfband filters and possible factorizations | Modulation and polyphase representations | Modulation and polyphase representations | Noble identities | Noble identities | block Toeplitz matrices and block z-transforms | block Toeplitz matrices and block z-transforms | polyphase examples | polyphase examples | Matlab wavelet toolbox | Matlab wavelet toolbox | Orthogonal filter banks | Orthogonal filter banks | paraunitary matrices | paraunitary matrices | orthogonality condition (Condition O) in the time domain | orthogonality condition (Condition O) in the time domain | modulation domain and polyphase domain | modulation domain and polyphase domain | Maxflat filters | Maxflat filters | Daubechies and Meyer formulas | Daubechies and Meyer formulas | Spectral factorization | Spectral factorization | Multiresolution Analysis (MRA) | Multiresolution Analysis (MRA) | requirements for MRA | requirements for MRA | nested spaces and complementary spaces; scaling functions and wavelets | nested spaces and complementary spaces; scaling functions and wavelets | Refinement equation | Refinement equation | iterative and recursive solution techniques | iterative and recursive solution techniques | infinite product formula | infinite product formula | filter bank approach for computing scaling functions and wavelets | filter bank approach for computing scaling functions and wavelets | Orthogonal wavelet bases | Orthogonal wavelet bases | connection to orthogonal filters | connection to orthogonal filters | orthogonality in the frequency domain | orthogonality in the frequency domain | Biorthogonal wavelet bases | Biorthogonal wavelet bases | Mallat pyramid algorithm | Mallat pyramid algorithm | Accuracy of wavelet approximations (Condition A) | Accuracy of wavelet approximations (Condition A) | vanishing moments | vanishing moments | polynomial cancellation in filter banks | polynomial cancellation in filter banks | Smoothness of wavelet bases | Smoothness of wavelet bases | convergence of the cascade algorithm (Condition E) | convergence of the cascade algorithm (Condition E) | splines | splines | Bases vs. frames | Bases vs. frames | Signal and image processing | Signal and image processing | finite length signals | finite length signals | boundary filters and boundary wavelets | boundary filters and boundary wavelets | wavelet compression algorithms | wavelet compression algorithms | Lifting | Lifting | ladder structure for filter banks | ladder structure for filter banks | factorization of polyphase matrix into lifting steps | factorization of polyphase matrix into lifting steps | lifting form of refinement equationSec | lifting form of refinement equationSec | Wavelets and subdivision | Wavelets and subdivision | nonuniform grids | nonuniform grids | multiresolution for triangular meshes | multiresolution for triangular meshes | representation and compression of surfaces | representation and compression of surfaces | Numerical solution of PDEs | Numerical solution of PDEs | Galerkin approximation | Galerkin approximation | wavelet integrals (projection coefficients | moments and connection coefficients) | wavelet integrals (projection coefficients | moments and connection coefficients) | convergence | convergence | Subdivision wavelets for integral equations | Subdivision wavelets for integral equations | Compression and convergence estimates | Compression and convergence estimates | M-band wavelets | M-band wavelets | DFT filter banks and cosine modulated filter banks | DFT filter banks and cosine modulated filter banks | Multiwavelets | MultiwaveletsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semestSubjects

discrete time signals and systems | discrete-time processing of continuous-time signals | decimation | interpolation | sampling rate conversion | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | Discrete Fourier transform | FFT algorithm | Short-time Fourier analysis and filter banks | Multirate techniques | Hilbert transforms | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability. This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability.Subjects

Elementary discrete mathematics for computer science and engineering | Elementary discrete mathematics for computer science and engineering | mathematical definitions | mathematical definitions | proofs and applicable methods | proofs and applicable methods | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | well-ordering | well-ordering | sets | sets | relations | relations | elementary graph theory | elementary graph theory | integer congruences | integer congruences | asymptotic notation and growth of functions | asymptotic notation and growth of functions | permutations and combinations | permutations and combinations | counting principles | counting principles | discrete probability | discrete probability | recursive definition | recursive definition | structural induction | structural induction | state machines and invariants | state machines and invariants | recurrences | recurrences | generating functions | generating functions | 6.042 | 6.042 | 18.062 | 18.062License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semesSubjects

discrete time signals and systems | discrete-time processing of continuous-time signals | decimation | interpolation | sampling rate conversion | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | Discrete Fourier transform | FFT algorithm | Short-time Fourier analysis and filter banks | Multirate techniques | Hilbert transforms | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semesSubjects

discrete time signals and systems | discrete-time processing of continuous-time signals | decimation | interpolation | sampling rate conversion | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | Discrete Fourier transform | FFT algorithm | Short-time Fourier analysis and filter banks | Multirate techniques | Hilbert transforms | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semesSubjects

discrete time signals and systems | discrete-time processing of continuous-time signals | decimation | interpolation | sampling rate conversion | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | Discrete Fourier transform | FFT algorithm | Short-time Fourier analysis and filter banks | Multirate techniques | Hilbert transforms | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semesSubjects

discrete time signals and systems | discrete-time processing of continuous-time signals | decimation | interpolation | sampling rate conversion | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | Discrete Fourier transform | FFT algorithm | Short-time Fourier analysis and filter banks | Multirate techniques | Hilbert transforms | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semesSubjects

discrete time signals and systems | discrete-time processing of continuous-time signals | decimation | interpolation | sampling rate conversion | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | Discrete Fourier transform | FFT algorithm | Short-time Fourier analysis and filter banks | Multirate techniques | Hilbert transforms | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semesSubjects

discrete time signals and systems | discrete-time processing of continuous-time signals | decimation | interpolation | sampling rate conversion | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | Discrete Fourier transform | FFT algorithm | Short-time Fourier analysis and filter banks | Multirate techniques | Hilbert transforms | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semesSubjects

discrete time signals and systems | discrete-time processing of continuous-time signals | decimation | interpolation | sampling rate conversion | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | Discrete Fourier transform | FFT algorithm | Short-time Fourier analysis and filter banks | Multirate techniques | Hilbert transforms | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semesSubjects

discrete time signals and systems | discrete-time processing of continuous-time signals | decimation | interpolation | sampling rate conversion | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | Discrete Fourier transform | FFT algorithm | Short-time Fourier analysis and filter banks | Multirate techniques | Hilbert transforms | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semesSubjects

discrete time signals and systems | discrete-time processing of continuous-time signals | decimation | interpolation | sampling rate conversion | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | Discrete Fourier transform | FFT algorithm | Short-time Fourier analysis and filter banks | Multirate techniques | Hilbert transforms | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semesSubjects

discrete time signals and systems | discrete-time processing of continuous-time signals | decimation | interpolation | sampling rate conversion | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | Discrete Fourier transform | FFT algorithm | Short-time Fourier analysis and filter banks | Multirate techniques | Hilbert transforms | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata