Searching for regenerative medicine : 10 results found | RSS Feed for this search
7.349 Stem Cells: A Cure or Disease? (MIT) 7.349 Stem Cells: A Cure or Disease? (MIT)
Description
Have you ever considered going to a pharmacy to order some new cardiomyocytes (heart muscle cells) for your ailing heart? It might sound crazy, but recent developments in stem cell science have made this concept not so futuristic. In this course, we will explore the underlying biology behind the idea of using stem cells to treat disease, specifically analyzing the mechanisms that enable a single genome to encode multiple cell states ranging from neurons to fibroblasts to T cells. Overall, we hope to provide a comprehensive overview of this exciting new field of research and its clinical relevance. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literat Have you ever considered going to a pharmacy to order some new cardiomyocytes (heart muscle cells) for your ailing heart? It might sound crazy, but recent developments in stem cell science have made this concept not so futuristic. In this course, we will explore the underlying biology behind the idea of using stem cells to treat disease, specifically analyzing the mechanisms that enable a single genome to encode multiple cell states ranging from neurons to fibroblasts to T cells. Overall, we hope to provide a comprehensive overview of this exciting new field of research and its clinical relevance. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literatSubjects
stem cells | stem cells | stem cell therapy | stem cell therapy | cellular reprogramming | cellular reprogramming | transdifferentiation | transdifferentiation | pluripotency | pluripotency | epigenetics | epigenetics | genome-wide sequencing | genome-wide sequencing | transcription-mediated reprogramming | transcription-mediated reprogramming | embryonic stem cell technology | embryonic stem cell technology | transcription factors | transcription factors | chromatin structure | chromatin structure | H3K4me3 | H3K4me3 | H3K27me3 | H3K27me3 | histone deacetylase 1 | histone deacetylase 1 | RNAi screens | RNAi screens | Oct4 | Oct4 | cloning | cloning | Dolly | Dolly | in vitro differentiation | in vitro differentiation | regenerative medicine | regenerative medicineLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-7.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
Regenerative medicine involves the repair and regeneration of tissues for therapeutic purposes, such as replacing bone marrow in leukemia, cartilage in osteoarthritis or cells of the heart after a heart attack. In this course, we will explore basic mechanisms of how cells differentiate into specific tissues in response to a variety of biologic signaling molecules. We will discuss the use of such factors for in vitro tissue production. We will also study the cellular mechanisms involved in the cloning of animals and how Scottish researchers produced the sheep Dolly using the nucleus of a mammary gland cell from an adult sheep. We will read papers describing organ production, such as the in vitro formation of beating heart cells. We will also consider the molecular bases of cellular tissue r Regenerative medicine involves the repair and regeneration of tissues for therapeutic purposes, such as replacing bone marrow in leukemia, cartilage in osteoarthritis or cells of the heart after a heart attack. In this course, we will explore basic mechanisms of how cells differentiate into specific tissues in response to a variety of biologic signaling molecules. We will discuss the use of such factors for in vitro tissue production. We will also study the cellular mechanisms involved in the cloning of animals and how Scottish researchers produced the sheep Dolly using the nucleus of a mammary gland cell from an adult sheep. We will read papers describing organ production, such as the in vitro formation of beating heart cells. We will also consider the molecular bases of cellular tissue rSubjects
regenerative medicine | regenerative medicine | tissue repair | tissue repair | cell differentiation | cell differentiation | stem cells | stem cellsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-7.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
How does a regenerating animal "know" what's missing? How are stem cells or differentiated cells used to create new tissues during regeneration? In this class we will take a comparative approach to explore this fascinating problem by critically examining classic and modern scientific literature about the developmental and molecular biology of regeneration. We will learn about conserved developmental pathways that are necessary for regeneration, and we will discuss the relevance of these findings for regenerative medicine. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highl How does a regenerating animal "know" what's missing? How are stem cells or differentiated cells used to create new tissues during regeneration? In this class we will take a comparative approach to explore this fascinating problem by critically examining classic and modern scientific literature about the developmental and molecular biology of regeneration. We will learn about conserved developmental pathways that are necessary for regeneration, and we will discuss the relevance of these findings for regenerative medicine. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highlSubjects
Regeneration | Regeneration | blastema | blastema | embryo | embryo | progenitor | progenitor | stem cells | stem cells | differentiation | differentiation | dedifferentiation | dedifferentiation | hydra | hydra | morphallaxis | morphallaxis | limb | limb | organ | organ | zebrafish | zebrafish | homeostasis | homeostasis | self-renewal | self-renewal | regenerative medicine | regenerative medicine | differentitate | differentitate | regulate | regulate | salamander | salamander | catenin | catenin | newt | newt | liver | liver | pluriptent | pluriptent | fibroblast | fibroblastLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-7.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataCancer and regenerative medicine
Description
Professor Xin Lu talks about the links between cancer and regenerative medicine. Professor Xin Lu is the Director of the Oxford branch of the Ludwig Institute for Cancer Research. Her lab works toward identifying molecular mechanisms that suppress tumour growth and metastasis and focuses on understanding the factors that lead to uncontrollable cell growth. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Subjects
oncogene | reprogramming | regenerative medicine | cancer | tumour suppressor | oncogene | reprogramming | regenerative medicine | cancer | tumour suppressorLicense
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://mediapub.it.ox.ac.uk/feeds/129165/audio.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataCancer and regenerative medicine
Description
Professor Xin Lu talks about the links between cancer and regenerative medicine. Professor Xin Lu is the Director of the Oxford branch of the Ludwig Institute for Cancer Research. Her lab works toward identifying molecular mechanisms that suppress tumour growth and metastasis and focuses on understanding the factors that lead to uncontrollable cell growth. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Subjects
oncogene | reprogramming | regenerative medicine | cancer | tumour suppressor | oncogene | reprogramming | regenerative medicine | cancer | tumour suppressorLicense
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://mediapub.it.ox.ac.uk/feeds/129165/video.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
One of the major priorities in biomedical research is understanding the molecular events that establish the complex processes involved in human development and the relationships of these processes to human disease and disease progression. In this class, we will explore stem cell biology and the way in which it has developed and shaped our ability to study complex human disease. We will introduce the field of stem cell biology and genome engineering through critical reading of both the classical and newest primary research literature. In addition, this course will discuss specific disease model systems and their benefits / limitations for understanding the disease and treating human patients. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT One of the major priorities in biomedical research is understanding the molecular events that establish the complex processes involved in human development and the relationships of these processes to human disease and disease progression. In this class, we will explore stem cell biology and the way in which it has developed and shaped our ability to study complex human disease. We will introduce the field of stem cell biology and genome engineering through critical reading of both the classical and newest primary research literature. In addition, this course will discuss specific disease model systems and their benefits / limitations for understanding the disease and treating human patients. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MITSubjects
stem cells | stem cells | genome engineering | genome engineering | pluripotency | pluripotency | disease progression | disease progression | embryonic stem cells | embryonic stem cells | induced pluripotent stem cells | induced pluripotent stem cells | transgenic animals | transgenic animals | regenerative medicine | regenerative medicine | CRISPR/cas9 | CRISPR/cas9 | Nuclear Transfer | Nuclear Transfer | Cellular Reprogramming | Cellular ReprogrammingLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-7.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata7.342 Pluripotent Stem Cells and Genome Engineering for Modeling Human Diseases (MIT)
Description
One of the major priorities in biomedical research is understanding the molecular events that establish the complex processes involved in human development and the relationships of these processes to human disease and disease progression. In this class, we will explore stem cell biology and the way in which it has developed and shaped our ability to study complex human disease. We will introduce the field of stem cell biology and genome engineering through critical reading of both the classical and newest primary research literature. In addition, this course will discuss specific disease model systems and their benefits / limitations for understanding the disease and treating human patients. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MITSubjects
stem cells | genome engineering | pluripotency | disease progression | embryonic stem cells | induced pluripotent stem cells | transgenic animals | regenerative medicine | CRISPR/cas9 | Nuclear Transfer | Cellular ReprogrammingLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata7.349 Stem Cells: A Cure or Disease? (MIT)
Description
Have you ever considered going to a pharmacy to order some new cardiomyocytes (heart muscle cells) for your ailing heart? It might sound crazy, but recent developments in stem cell science have made this concept not so futuristic. In this course, we will explore the underlying biology behind the idea of using stem cells to treat disease, specifically analyzing the mechanisms that enable a single genome to encode multiple cell states ranging from neurons to fibroblasts to T cells. Overall, we hope to provide a comprehensive overview of this exciting new field of research and its clinical relevance. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literatSubjects
stem cells | stem cell therapy | cellular reprogramming | transdifferentiation | pluripotency | epigenetics | genome-wide sequencing | transcription-mediated reprogramming | embryonic stem cell technology | transcription factors | chromatin structure | H3K4me3 | H3K27me3 | histone deacetylase 1 | RNAi screens | Oct4 | cloning | Dolly | in vitro differentiation | regenerative medicineLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata7.340 Regenerative Medicine: from Bench to Bedside (MIT)
Description
Regenerative medicine involves the repair and regeneration of tissues for therapeutic purposes, such as replacing bone marrow in leukemia, cartilage in osteoarthritis or cells of the heart after a heart attack. In this course, we will explore basic mechanisms of how cells differentiate into specific tissues in response to a variety of biologic signaling molecules. We will discuss the use of such factors for in vitro tissue production. We will also study the cellular mechanisms involved in the cloning of animals and how Scottish researchers produced the sheep Dolly using the nucleus of a mammary gland cell from an adult sheep. We will read papers describing organ production, such as the in vitro formation of beating heart cells. We will also consider the molecular bases of cellular tissue rLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata7.342 Developmental and Molecular Biology of Regeneration (MIT)
Description
How does a regenerating animal "know" what's missing? How are stem cells or differentiated cells used to create new tissues during regeneration? In this class we will take a comparative approach to explore this fascinating problem by critically examining classic and modern scientific literature about the developmental and molecular biology of regeneration. We will learn about conserved developmental pathways that are necessary for regeneration, and we will discuss the relevance of these findings for regenerative medicine. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highlSubjects
Regeneration | blastema | embryo | progenitor | stem cells | differentiation | dedifferentiation | hydra | morphallaxis | limb | organ | zebrafish | homeostasis | self-renewal | regenerative medicine | differentitate | regulate | salamander | catenin | newt | liver | pluriptent | fibroblastLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata