Searching for release : 16 results found | RSS Feed for this search

1

20.462J Molecular Principles of Biomaterials (MIT) 20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces. This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterials | biomaterial engineering | biomaterial engineering | biotechnology | biotechnology | cell-guiding surface | cell-guiding surface | molecular biomaterials | molecular biomaterials | drug release | drug release | polymers | polymers | pulsatile release | pulsatile release | polymerization | polymerization | polyer erosion | polyer erosion | tissue engineering | tissue engineering | hydrogels | hydrogels | adhesion | adhesion | migration | migration | drug diffusion | drug diffusion | molecular switches | molecular switches | molecular motors | molecular motors | nanoparticles | nanoparticles | microparticles | microparticles | vaccines | vaccines | drug targeting | drug targeting | micro carriers | micro carriers | nano carriers | nano carriers | intracellular drug delivery | intracellular drug delivery | 20.462 | 20.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT) 9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control.

Subjects

neurotransmission | neurotransmission | nerve terminals | nerve terminals | monoamine transmitters | monoamine transmitters | acetylcholine | acetylcholine | serotonin | serotonin | dopamine | dopamine | norepinephrine | norepinephrine | amino acid and peptide transmitters | amino acid and peptide transmitters | neuromodulators | neuromodulators | adenosine | adenosine | neurotransmitter synthesis | neurotransmitter synthesis | release | release | inactivation | inactivation | receptor-mediated | receptor-mediated | second-messenger | second-messenger | neurotransmitter | neurotransmitter | antidepressant | antidepressant | brain lipid | brain lipid | blood brain barrier | blood brain barrier | parkinson's disease | parkinson's disease | seratonin | seratonin | depression | depression | glutamate | glutamate | aspartate | aspartate | NDMA | NDMA | drug | drug | drug discovery | drug discovery | pharmaceutical | pharmaceutical | signaling pathway | signaling pathway | receptor | receptor | spinal cord | spinal cord | marijuana | marijuana | adensosine | adensosine | histamine | histamine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT) 9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

Considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. Focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. An additional project is required for graduate credit. Considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. Focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. An additional project is required for graduate credit.

Subjects

neurotransmission | neurotransmission | nerve terminals | nerve terminals | monoamine transmitters | monoamine transmitters | acetylcholine | acetylcholine | serotonin | serotonin | dopamine | dopamine | norepinephrine | norepinephrine | amino acid and peptide transmitters | amino acid and peptide transmitters | neuromodulators | neuromodulators | adenosine | adenosine | neurotransmitter synthesis | neurotransmitter synthesis | release | release | inactivation | inactivation | receptor-mediated | receptor-mediated | second-messenger | second-messenger

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

PE.730 Archery (MIT) PE.730 Archery (MIT)

Description

Includes audio/video content: AV special element video. This 12 session course is designed for the beginning or novice archer and uses recurve indoor target bows and equipment. The purpose of the course is to introduce students to the basic techniques of indoor target archery emphasizing the care and use of equipment, range safety, stance and shooting techniques, scoring and competition. Includes audio/video content: AV special element video. This 12 session course is designed for the beginning or novice archer and uses recurve indoor target bows and equipment. The purpose of the course is to introduce students to the basic techniques of indoor target archery emphasizing the care and use of equipment, range safety, stance and shooting techniques, scoring and competition.

Subjects

archery | archery | bow | bow | arrow | arrow | stringing | stringing | tourney | tourney | technique | technique | release | release | aim | aim | firing | firing | grouping | grouping | clusters | clusters | safety | safety | stretching | stretching | video | video | high speed video | high speed video | stance | stance | sighting | sighting | speed shooting | speed shooting | balance | balance | musculature | musculature | tournaments | tournaments | distance | distance | accuracy | accuracy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterial engineering | biotechnology | cell-guiding surface | molecular biomaterials | drug release | polymers | pulsatile release | polymerization | polyer erosion | tissue engineering | hydrogels | adhesion | migration | drug diffusion | molecular switches | molecular motors | nanoparticles | microparticles | vaccines | drug targeting | micro carriers | nano carriers | intracellular drug delivery | 20.462 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Biological Bases of Learning and Memory (MIT) 7.343 Biological Bases of Learning and Memory (MIT)

Description

How does the brain come to learn whether a stimulus is annoying, rewarding or neutral? How does remembering how to ride a bicycle differ from remembering scenes from a movie? In this course, students will explore the concept that learning and memory have a physical basis that can be observed as biochemical, physiological and/or morphological changes to neural tissue. Our goal will be to understand the strategies and techniques biologists use to search for the memory trace: the "holy grail" of modern neuroscience. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interact How does the brain come to learn whether a stimulus is annoying, rewarding or neutral? How does remembering how to ride a bicycle differ from remembering scenes from a movie? In this course, students will explore the concept that learning and memory have a physical basis that can be observed as biochemical, physiological and/or morphological changes to neural tissue. Our goal will be to understand the strategies and techniques biologists use to search for the memory trace: the "holy grail" of modern neuroscience. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interact

Subjects

learning | learning | memory | memory | neural tissue | neural tissue | neuronal connections | neuronal connections | synapse formation | synapse formation | synapse stabilization | synapse stabilization | synaptic transmission | synaptic transmission | synaptic plasticity | synaptic plasticity | neuromodulation | neuromodulation | experience-dependent circuit remodeling | experience-dependent circuit remodeling | neuroscience | neuroscience | pre- and post-synaptic mechanisms | pre- and post-synaptic mechanisms | neurotransmitter release | neurotransmitter release | activity-regulated genes | activity-regulated genes | hippocampus | hippocampus | long-term potentiation | long-term potentiation | long-term depression | long-term depression | cerebellar plasticity | cerebellar plasticity | Non-Associative | Non-Associative | Associative | Associative | cpg15 | cpg15 | experience-dependent synaptic plasticity | experience-dependent synaptic plasticity | perceptual learning | perceptual learning | observational learning | observational learning

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.349 From Molecules to Behavior: Synaptic Neurophysiology (MIT) 7.349 From Molecules to Behavior: Synaptic Neurophysiology (MIT)

Description

Like transistors in a computer, synapses perform complex computations and connect the brain's non-linear processing elements (neurons) into a functional circuit. Understanding the role of synapses in neuronal computation is essential to understanding how the brain works. In this course students will be introduced to cutting-edge research in the field of synaptic neurophysiology. The course will cover such topics as synapse formation, synaptic function, synaptic plasticity, the roles of synapses in higher cognitive processes and how synaptic dysfunction can lead to disease. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn ab Like transistors in a computer, synapses perform complex computations and connect the brain's non-linear processing elements (neurons) into a functional circuit. Understanding the role of synapses in neuronal computation is essential to understanding how the brain works. In this course students will be introduced to cutting-edge research in the field of synaptic neurophysiology. The course will cover such topics as synapse formation, synaptic function, synaptic plasticity, the roles of synapses in higher cognitive processes and how synaptic dysfunction can lead to disease. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn ab

Subjects

synaptic neurophysiology | synaptic neurophysiology | neuron | neuron | synaptic fusion | synaptic fusion | synaptic release | synaptic release | synaptic plasticity | synaptic plasticity | neuronal circuits | neuronal circuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

'Borgsten' is launched into the River Wear

Description

Launch of the tanker ?Borgsten?, built by J.L. Thompson & Sons Ltd, North Sands, 1 November 1963 (TWAM ref. DS.JLT/4/PH/1/709/3/3). Tyne & Wear Archives is proud to present a selection of images from its Sunderland shipbuilding collections. The set has been produced to celebrate Sunderland History Fair on 7 June 2014. It's a reminder of the thousands of vessels launched on the River Wear and the many outstanding achievements of Sunderland?s shipyards and their workers. These photographs reflect Sunderland?s history of innovation in shipbuilding and marine engineering from the development of turret ships in the 1890s through to the design for SD14s in the 1960s. The Sunderland shipbuilding collections are full of fascinating stories. Some of these are represented in this set, such as the ?Rondefjell?, launched in two halves on the River Wear by John Crown & Sons Ltd and then joined together on the River Tyne. The set also shows the vital part that Sunderland?s shipbuilding industry played during the First World War. William Doxford & Sons Ltd built Royal Naval destroyers such as HMS Opal, which served in the Battle of Jutland, while other yards constructed cargo ships to help keep these shores supplied. (Copyright) We're happy for you to share these digital images within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.uk

Subjects

sunderland | shipbuilding | borgsten | jlthompsonsonsltd | shiplaunches | northsandssunderland | shipyard | tanker | blackandwhitephotograph | maritimeheritage | industry | humanity | crane | water | flags | sunderlandhistoryfair | 7june2014 | cargo | riverwear | launch | northsands | 1november1963 | marineengineering | workers | supply | letters | channel | buildings | platform | structure | frame | windows | roof | walls | stairs | hats | coat | trousers | shirt | boots | timber | pipes | chain | pattern | industrial | piles | observing | momentous | unusual | surreal | barrier | released | vessel | poignant | vision | beacon | path | standing | still

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

PE.730 Archery (MIT)

Description

This 12 session course is designed for the beginning or novice archer and uses recurve indoor target bows and equipment. The purpose of the course is to introduce students to the basic techniques of indoor target archery emphasizing the care and use of equipment, range safety, stance and shooting techniques, scoring and competition.

Subjects

archery | bow | arrow | stringing | tourney | technique | release | aim | firing | grouping | clusters | safety | stretching | video | high speed video | stance | sighting | speed shooting | balance | musculature | tournaments | distance | accuracy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Biological Bases of Learning and Memory (MIT)

Description

How does the brain come to learn whether a stimulus is annoying, rewarding or neutral? How does remembering how to ride a bicycle differ from remembering scenes from a movie? In this course, students will explore the concept that learning and memory have a physical basis that can be observed as biochemical, physiological and/or morphological changes to neural tissue. Our goal will be to understand the strategies and techniques biologists use to search for the memory trace: the "holy grail" of modern neuroscience. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interact

Subjects

learning | memory | neural tissue | neuronal connections | synapse formation | synapse stabilization | synaptic transmission | synaptic plasticity | neuromodulation | experience-dependent circuit remodeling | neuroscience | pre- and post-synaptic mechanisms | neurotransmitter release | activity-regulated genes | hippocampus | long-term potentiation | long-term depression | cerebellar plasticity | Non-Associative | Associative | cpg15 | experience-dependent synaptic plasticity | perceptual learning | observational learning

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.349 From Molecules to Behavior: Synaptic Neurophysiology (MIT)

Description

Like transistors in a computer, synapses perform complex computations and connect the brain's non-linear processing elements (neurons) into a functional circuit. Understanding the role of synapses in neuronal computation is essential to understanding how the brain works. In this course students will be introduced to cutting-edge research in the field of synaptic neurophysiology. The course will cover such topics as synapse formation, synaptic function, synaptic plasticity, the roles of synapses in higher cognitive processes and how synaptic dysfunction can lead to disease. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn ab

Subjects

synaptic neurophysiology | neuron | synaptic fusion | synaptic release | synaptic plasticity | neuronal circuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. The class focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); it also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control.

Subjects

neurotransmission | nerve terminals | monoamine transmitters | acetylcholine | serotonin | dopamine | norepinephrine | amino acid and peptide transmitters | neuromodulators | adenosine | neurotransmitter synthesis | release | inactivation | receptor-mediated | second-messenger | neurotransmitter | antidepressant | brain lipid | blood brain barrier | parkinson's disease | seratonin | depression | glutamate | aspartate | NDMA | drug | drug discovery | pharmaceutical | signaling pathway | receptor | spinal cord | marijuana | adensosine | histamine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.15 Biochemistry and Pharmacology of Synaptic Transmission (MIT)

Description

Considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. Focuses on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); also examines amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation, and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems they control. An additional project is required for graduate credit.

Subjects

neurotransmission | nerve terminals | monoamine transmitters | acetylcholine | serotonin | dopamine | norepinephrine | amino acid and peptide transmitters | neuromodulators | adenosine | neurotransmitter synthesis | release | inactivation | receptor-mediated | second-messenger

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Targeting and controlling medication delivery

Description

3D video demonstrating what is inside a controlled release formulation

Subjects

3D | controlled release formulation | drug delivery | pills | medication | video | Subjects allied to medicine | B000

License

Attribution 4.0 International Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

PE.730 Archery (MIT)

Description

This 12 session course is designed for the beginning or novice archer and uses recurve indoor target bows and equipment. The purpose of the course is to introduce students to the basic techniques of indoor target archery emphasizing the care and use of equipment, range safety, stance and shooting techniques, scoring and competition.

Subjects

archery | bow | arrow | stringing | tourney | technique | release | aim | firing | grouping | clusters | safety | stretching | video | high speed video | stance | sighting | speed shooting | balance | musculature | tournaments | distance | accuracy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

'Borgsten' is launched into the River Wear

Description

Subjects

windows | roof | industry | water | shirt | stairs | standing | buildings | still | workers | industrial | pattern | boots | humanity | crane | path | timber | coat | letters | pipes | platform | hats | surreal | vessel | flags | cargo | structure | riverwear | chain | vision | frame | trousers | barrier | walls | unusual | launch | shipyard | beacon | channel | tanker | released | piles | supply | sunderland | observing | shipbuilding | poignant | momentous | blackandwhitephotograph | maritimeheritage | northsands | marineengineering | shiplaunches | borgsten | jlthompsonsonsltd | northsandssunderland | 7june2014 | sunderlandhistoryfair | 1november1963

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata