Searching for reliability : 109 results found | RSS Feed for this search

1 2 3 4

6.152J Microelectronics Processing Technology (MIT) 6.152J Microelectronics Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology. This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | microelectronics | Microelectronics processing | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits | integrated circuits | vacuum | vacuum | chemical vapor deposition | chemical vapor deposition | CVD | CVD | oxidation | oxidation | diffusion | diffusion | implantation | implantation | lithography | lithography | soft lithography | soft lithography | etching | etching | sputtering | sputtering | evaporation | evaporation | interconnect | interconnect | metallization | metallization | crystal growth | crystal growth | reliability | reliability | fabrication | fabrication | processing | processing | photolithography | photolithography | physical vapor deposition | physical vapor deposition | MOS | MOS | MOS capacitor | MOS capacitor | microcantilever | microcantilever | microfluidic | microfluidic | 6.152 | 6.152 | 3.155 | 3.155

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Microelectronics Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | 6.152 | 3.155

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.033 Computer System Engineering (MIT) 6.033 Computer System Engineering (MIT)

Description

Includes audio/video content: AV lectures. This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. Case studies of working systems and readings from the current literature provide comparisons and contrasts. Two design projects are required, and students engage in extensive written communication exercises. Includes audio/video content: AV lectures. This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. Case studies of working systems and readings from the current literature provide comparisons and contrasts. Two design projects are required, and students engage in extensive written communication exercises.

Subjects

computer systems | computer systems | systems design | systems design | complexity | complexity | abstractions | abstractions | modularity | modularity | client server | client server | operating system | operating system | performance | performance | networks | networks | layering | layering | routing | routing | congestion control | congestion control | reliability | reliability | atomicity | atomicity | isolation | isolation | security | security | authentication | authentication | cryptography | cryptography | therac 25 | therac 25 | unix | unix | mapreduce | mapreduce | architecture of complexity | architecture of complexity | trusting trust | trusting trust | computer system design | computer system design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.358J System Safety (MIT) 16.358J System Safety (MIT)

Description

Covers important concepts and techniques in designing and operating safety-critical systems. Topics include: the nature of risk, formal accident and human error models, causes of accidents, fundamental concepts of system safety engineering, system and software hazard analysis, designing for safety, fault tolerance, safety issues in the design of human-machine interaction, verification of safety, creating a safety culture, and management of safety-critical projects. Includes a class project involving the high-level system design and analysis of a safety-critical system. Covers important concepts and techniques in designing and operating safety-critical systems. Topics include: the nature of risk, formal accident and human error models, causes of accidents, fundamental concepts of system safety engineering, system and software hazard analysis, designing for safety, fault tolerance, safety issues in the design of human-machine interaction, verification of safety, creating a safety culture, and management of safety-critical projects. Includes a class project involving the high-level system design and analysis of a safety-critical system.

Subjects

system safety | system safety | software safety | software safety | system reliability | system reliability | safety-critical systems | safety-critical systems | accident models | accident models | human error models | human error models | system safety engineering | system safety engineering | software hazard analysis | software hazard analysis | fault tolerance | fault tolerance | safety culture | safety culture | 16.358 | 16.358 | ESD.358 | ESD.358

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.033 Computer System Engineering (SMA 5501) (MIT) 6.033 Computer System Engineering (SMA 5501) (MIT)

Description

This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. We will also look at case studies of working systems and readings from the current literature provide comparisons and contrasts, and do two design projects. Students engage in extensive written communication exercises. Enrollment may be limited. This course is worth 4 Engineering Design Points.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5501 (Computer System Engineering). This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. We will also look at case studies of working systems and readings from the current literature provide comparisons and contrasts, and do two design projects. Students engage in extensive written communication exercises. Enrollment may be limited. This course is worth 4 Engineering Design Points.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5501 (Computer System Engineering).

Subjects

computer software | computer software | hardware systems | hardware systems | controlling complexity | controlling complexity | strong modularity | strong modularity | client-server design | client-server design | virtual memory | virtual memory | threads | threads | networks | networks | atomicity | atomicity | coordination | coordination | parallel activities | parallel activities | recovery | recovery | reliability | reliability | privacy | privacy | security | security | encryption | encryption | impact on society | impact on society | computer systems | computer systems | case studies | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.885J Aircraft Systems Engineering (MIT) 16.885J Aircraft Systems Engineering (MIT)

Description

Includes audio/video content: AV lectures, AV special element video. 16.885J offers a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams retrospectively analyze an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Oral and written versions of the case study are delivered. For the Fall 2005 term, the class focuses on a systems engineering analysis of the Space Shuttle. It offers study of both design and operations of the shuttle, with frequent lectures by outside experts. Students choose specific s Includes audio/video content: AV lectures, AV special element video. 16.885J offers a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams retrospectively analyze an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Oral and written versions of the case study are delivered. For the Fall 2005 term, the class focuses on a systems engineering analysis of the Space Shuttle. It offers study of both design and operations of the shuttle, with frequent lectures by outside experts. Students choose specific s

Subjects

16.885 | 16.885 | ESD.35 | ESD.35 | aircraft systems | aircraft systems | aircraft systems engineering | aircraft systems engineering | lifecycle | lifecycle | cost estimation | cost estimation | weight estimation | weight estimation | aircraft performance | aircraft performance | aircraft safety | aircraft safety | aircraft reliability | aircraft reliability | subsystems | subsystems | risk analysis | risk analysis | risk management | risk management | system realization | system realization | retrospective analysis | retrospective analysis | key design drivers | key design drivers | design drivers | design drivers | design decisions | design decisions | aircraft attributes | aircraft attributes | operational experience | operational experience | case study | case study | case studies | case studies | air transportation system | air transportation system | air defense system | air defense system | systems engineering | systems engineering | interface management | interface management | interface verification | interface verification | interface validation | interface validation | subsystem architecture | subsystem architecture | performance issues | performance issues | design closure | design closure | complex systems | complex systems | space shuttle | space shuttle | space systems | space systems | NASA | NASA | sound barrier | sound barrier | ascent | ascent | aeronautics | aeronautics | liftoff | liftoff | takeoff | takeoff

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.010 Uncertainty in Engineering (MIT) 1.010 Uncertainty in Engineering (MIT)

Description

This course gives an introduction to probability and statistics, with emphasis on engineering applications. Course topics include events and their probability, the total probability and Bayes' theorems, discrete and continuous random variables and vectors, uncertainty propagation and conditional analysis. Second-moment representation of uncertainty, random sampling, estimation of distribution parameters (method of moments, maximum likelihood, Bayesian estimation), and simple and multiple linear regression. Concepts illustrated with examples from various areas of engineering and everyday life. This course gives an introduction to probability and statistics, with emphasis on engineering applications. Course topics include events and their probability, the total probability and Bayes' theorems, discrete and continuous random variables and vectors, uncertainty propagation and conditional analysis. Second-moment representation of uncertainty, random sampling, estimation of distribution parameters (method of moments, maximum likelihood, Bayesian estimation), and simple and multiple linear regression. Concepts illustrated with examples from various areas of engineering and everyday life.

Subjects

fundamentals of probability | fundamentals of probability | random processes | random processes | statistics | statistics | decision analysis | decision analysis | random variables and vectors | random variables and vectors | uncertainty propagation | uncertainty propagation | conditional distributions | conditional distributions | second-moment analysis | second-moment analysis | system reliability | system reliability | Bayes theorem | Bayes theorem | total probability theorem | total probability theorem | Bayesian analysis and risk-based decision | Bayesian analysis and risk-based decision | estimation of distribution parameters | estimation of distribution parameters | hypothesis testing | hypothesis testing | simple and multiple linear regressions | simple and multiple linear regressions | Poisson and Markov processes | Poisson and Markov processes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT) 6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology. This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | microelectronics | Microelectronics processing | Microelectronics processing | integrated circuits | integrated circuits | vacuum | vacuum | chemical vapor deposition | chemical vapor deposition | CVD | CVD | oxidation | oxidation | diffusion | diffusion | implantation | implantation | lithography | lithography | soft lithography | soft lithography | etching | etching | sputtering | sputtering | evaporation | evaporation | interconnect | interconnect | metallization | metallization | crystal growth | crystal growth | reliability | reliability | fabrication | fabrication | processing | processing | photolithography | photolithography | physical vapor deposition | physical vapor deposition | MOS | MOS | MOS capacitor | MOS capacitor | microcantilever | microcantilever | microfluidic. | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.151 Probability and Statistics in Engineering (MIT) 1.151 Probability and Statistics in Engineering (MIT)

Description

This class covers quantitative analysis of uncertainty and risk for engineering applications. Fundamentals of probability, random processes, statistics, and decision analysis are covered, along with random variables and vectors, uncertainty propagation, conditional distributions, and second-moment analysis. System reliability is introduced. Other topics covered include Bayesian analysis and risk-based decision, estimation of distribution parameters, hypothesis testing, simple and multiple linear regressions, and Poisson and Markov processes. There is an emphasis placed on real-world applications to engineering problems. This class covers quantitative analysis of uncertainty and risk for engineering applications. Fundamentals of probability, random processes, statistics, and decision analysis are covered, along with random variables and vectors, uncertainty propagation, conditional distributions, and second-moment analysis. System reliability is introduced. Other topics covered include Bayesian analysis and risk-based decision, estimation of distribution parameters, hypothesis testing, simple and multiple linear regressions, and Poisson and Markov processes. There is an emphasis placed on real-world applications to engineering problems.

Subjects

fundamentals of probability | fundamentals of probability | random processes | random processes | statistics | statistics | decision analysis | decision analysis | random variables and vectors | random variables and vectors | uncertainty propagation | uncertainty propagation | conditional distributions | conditional distributions | second-moment analysis | second-moment analysis | system reliability | system reliability | Bayesian analysis and risk-based decision | Bayesian analysis and risk-based decision | estimation of distribution parameters | estimation of distribution parameters | hypothesis testing | hypothesis testing | simple and multiple linear regressions | simple and multiple linear regressions | Poisson and Markov processes | Poisson and Markov processes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.010 Uncertainty in Engineering (MIT) 1.010 Uncertainty in Engineering (MIT)

Description

This undergraduate class serves as an introduction to probability and statistics, with emphasis on engineering applications. The first segment discusses events and their probability, Bayes' Theorem, discrete and continuous random variables and vectors, univariate and multivariate distributions, Bernoulli trials and Poisson point processes, and full-distribution uncertainty propagation and conditional analysis. The second segment deals with second-moment representation of uncertainty and second-moment uncertainty propagation and conditional analysis. The final segment covers random sampling, point and interval estimation, hypothesis testing, and linear regression. Many of the concepts covered in class are illustrated with real-world examples from various areas of engineering. This undergraduate class serves as an introduction to probability and statistics, with emphasis on engineering applications. The first segment discusses events and their probability, Bayes' Theorem, discrete and continuous random variables and vectors, univariate and multivariate distributions, Bernoulli trials and Poisson point processes, and full-distribution uncertainty propagation and conditional analysis. The second segment deals with second-moment representation of uncertainty and second-moment uncertainty propagation and conditional analysis. The final segment covers random sampling, point and interval estimation, hypothesis testing, and linear regression. Many of the concepts covered in class are illustrated with real-world examples from various areas of engineering.

Subjects

statistics | statistics | decision analysis | decision analysis | random variables and vectors | random variables and vectors | uncertainty propagation | uncertainty propagation | conditional distributions | conditional distributions | second-moment analysis | second-moment analysis | system reliability | system reliability | Bayesian analysis and risk-based decision | Bayesian analysis and risk-based decision | estimation of distribution parameters | estimation of distribution parameters | hypothesis testing | hypothesis testing | simple and multiple linear regressions | simple and multiple linear regressions | Poisson and Markov processes | Poisson and Markov processes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.885J Aircraft Systems Engineering (MIT) 16.885J Aircraft Systems Engineering (MIT)

Description

Aircraft are complex products comprised of many subsystems which must meet demanding customer and operational lifecycle value requirements. This course adopts a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams "retrospectively analyze" an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Finally, the student teams deliver oral and written versions of the case study. Aircraft are complex products comprised of many subsystems which must meet demanding customer and operational lifecycle value requirements. This course adopts a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams "retrospectively analyze" an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Finally, the student teams deliver oral and written versions of the case study.

Subjects

aircraft systems | aircraft systems | aircraft systems engineering | aircraft systems engineering | lifecycle | lifecycle | cost estimation | cost estimation | weight estimation | weight estimation | aircraft performance | aircraft performance | aircraft safety | aircraft safety | aircraft reliability | aircraft reliability | subsystems; risk analysis | subsystems; risk analysis | risk management | risk management | system realization | system realization | retrospective analysis | retrospective analysis | key design drivers | key design drivers | design drivers | design drivers | design decisions | design decisions | aircraft attributes | aircraft attributes | operational experience | operational experience | case study | case study | case studies | case studies | air transportation systems | air transportation systems | air defense system | air defense system | systems engineering | systems engineering | interface management | interface management | interface verification | interface verification | subsystem architecture | subsystem architecture | performance issures | performance issures | design closure | design closure | complex systems | complex systems | 16.885 | 16.885 | ESD.35 | ESD.35

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.878 Qualitative Research: Design and Methods (MIT) 17.878 Qualitative Research: Design and Methods (MIT)

Description

This seminar explores the development and application of qualitative research designs and methods in political analysis. It considers a broad array of approaches, from exploratory narratives to focused-comparison case studies, for investigating plausible alternative hypotheses. The focus is on analysis, not data collection. This seminar explores the development and application of qualitative research designs and methods in political analysis. It considers a broad array of approaches, from exploratory narratives to focused-comparison case studies, for investigating plausible alternative hypotheses. The focus is on analysis, not data collection.

Subjects

development and application of qualitative research designs and methods in political analysis | development and application of qualitative research designs and methods in political analysis | exploratory narrative | exploratory narrative | focused-comparison case studies | focused-comparison case studies | investigating plausible alternative hypotheses | investigating plausible alternative hypotheses | research methods | research methods | methodology | methodology | rival hypothesis | rival hypothesis | research designs | research designs | plausibility | plausibility | political analysis | political analysis | data analysis | data analysis | validity | validity | reliability | reliability | inference | inference | observations | observations | cases | cases | subjects | subjects | research agenda | research agenda | qualitative methods | qualitative methods | qualitative research | qualitative research

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.358J System Safety (MIT) 16.358J System Safety (MIT)

Description

This course covers important concepts and techniques in designing and operating safety-critical systems. Topics covered include: the nature of risk, formal accident and human error models, causes of accidents, fundamental concepts of system safety engineering, system and software hazard analysis, designing for safety, fault tolerance, safety issues in the design of human-machine interaction, verification of safety, creating a safety culture, and management of safety-critical projects. It also includes a class project involving the high-level system design and analysis of a safety-critical system. This course covers important concepts and techniques in designing and operating safety-critical systems. Topics covered include: the nature of risk, formal accident and human error models, causes of accidents, fundamental concepts of system safety engineering, system and software hazard analysis, designing for safety, fault tolerance, safety issues in the design of human-machine interaction, verification of safety, creating a safety culture, and management of safety-critical projects. It also includes a class project involving the high-level system design and analysis of a safety-critical system.

Subjects

system safety | system safety | software safety | software safety | system reliability | system reliability | safety-critical systems | safety-critical systems | accident models | accident models | human error models | human error models | system safety engineering | system safety engineering | software hazard analysis | software hazard analysis | fault tolerance | fault tolerance | safety culture | safety culture

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.885J Aircraft Systems Engineering (MIT) 16.885J Aircraft Systems Engineering (MIT)

Description

Aircraft are complex products comprised of many subsystems which must meet demanding customer and operational lifecycle value requirements. This course adopts a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams "retrospectively analyze" an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Finally, the student teams deliver oral and written versions of the case study. Aircraft are complex products comprised of many subsystems which must meet demanding customer and operational lifecycle value requirements. This course adopts a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams "retrospectively analyze" an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Finally, the student teams deliver oral and written versions of the case study.

Subjects

aircraft systems | aircraft systems | aircraft systems engineering | aircraft systems engineering | lifecycle | lifecycle | cost estimation | cost estimation | weight estimation | weight estimation | aircraft performance | aircraft performance | aircraft safety | aircraft safety | aircraft reliability | aircraft reliability | subsystems; risk analysis | subsystems; risk analysis | risk management | risk management | system realization | system realization | retrospective analysis | retrospective analysis | key design drivers | key design drivers | design drivers | design drivers | design decisions | design decisions | aircraft attributes | aircraft attributes | operational experience | operational experience | case study | case study | case studies | case studies | air transportation systems | air transportation systems | air defense system | air defense system | systems engineering | systems engineering | interface management | interface management | interface verification | interface verification | subsystem architecture | subsystem architecture | performance issures | performance issures | design closure | design closure | complex systems | complex systems | 16.885 | 16.885 | ESD.35 | ESD.35

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Micro/Nano Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata