Searching for replication : 59 results found | RSS Feed for this search

1 2

7.60 Cell Biology: Structure and Functions of the Nucleus (MIT) 7.60 Cell Biology: Structure and Functions of the Nucleus (MIT)

Description

This course covers the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Topics include Eukaryotic genome structure, function, and expression, processing of RNA, and regulation of the cell cycle. The techniques and logic used to address important problems in nuclear cell biology is emphasized. Lectures cover broad topic areas in nuclear cell biology and class discussions focus on representative papers recently published in the field. This course covers the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Topics include Eukaryotic genome structure, function, and expression, processing of RNA, and regulation of the cell cycle. The techniques and logic used to address important problems in nuclear cell biology is emphasized. Lectures cover broad topic areas in nuclear cell biology and class discussions focus on representative papers recently published in the field.

Subjects

cell biology | cell biology | nucleus | nucleus | biology | biology | nuclear cell biology | nuclear cell biology | DNA replication | DNA replication | DNA repair | DNA repair | DNA | DNA | genome | genome | cell cycle control | cell cycle control | chromatin | chromatin | gene expression | gene expression | replication | replication | transcription | transcription | RNA | RNA | RNA interference | RNA interference | mRNA | mRNA | microRNA | microRNA | RNAi | RNAi

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.60 Cell Biology: Structure and Functions of the Nucleus (MIT) 7.60 Cell Biology: Structure and Functions of the Nucleus (MIT)

Description

The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression. The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.

Subjects

cell biology | cell biology | nucleus | nucleus | biology | biology | nuclear cell biology | nuclear cell biology | DNA replication | DNA replication | DNA repair | DNA repair | DNA | DNA | genome | genome | cell cycle control | cell cycle control | transcriptional regulation | transcriptional regulation | gene expression | gene expression | chromatin | chromatin | chromosomes | chromosomes | replication | replication | transcription | transcription | RNA | RNA | RNA interference | RNA interference | mRNA | mRNA | microRNA | microRNA | RNAi | RNAi

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.60 Cell Biology: Structure and Functions of the Nucleus (MIT) 7.60 Cell Biology: Structure and Functions of the Nucleus (MIT)

Description

This course covers the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Topics include Eukaryotic genome structure, function, and expression, processing of RNA, and regulation of the cell cycle. The techniques and logic used to address important problems in nuclear cell biology is emphasized. Lectures cover broad topic areas in nuclear cell biology and class discussions focus on representative papers recently published in the field. This course covers the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Topics include Eukaryotic genome structure, function, and expression, processing of RNA, and regulation of the cell cycle. The techniques and logic used to address important problems in nuclear cell biology is emphasized. Lectures cover broad topic areas in nuclear cell biology and class discussions focus on representative papers recently published in the field.

Subjects

cell biology | cell biology | nucleus | nucleus | biology | biology | nuclear cell biology | nuclear cell biology | DNA replication | DNA replication | DNA repair | DNA repair | DNA | DNA | genome | genome | cell cycle control | cell cycle control | chromatin | chromatin | gene expression | gene expression | replication | replication | transcription | transcription | RNA | RNA | RNA interference | RNA interference | mRNA | mRNA | microRNA | microRNA | RNAi | RNAi

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.60 Cell Biology: Structure and Functions of the Nucleus (MIT) 7.60 Cell Biology: Structure and Functions of the Nucleus (MIT)

Description

The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression. The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.

Subjects

cell biology | cell biology | nucleus | nucleus | biology | biology | nuclear cell biology | nuclear cell biology | DNA replication | DNA replication | DNA repair | DNA repair | DNA | DNA | genome | genome | cell cycle control | cell cycle control | transcriptional regulation | transcriptional regulation | gene expression | gene expression | chromatin | chromatin | chromosomes | chromosomes | replication | replication | transcription | transcription | RNA | RNA | RNA interference | RNA interference | mRNA | mRNA | microRNA | microRNA | RNAi | RNAi

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Readme file for Distributed Web Systems

Description

This readme file contains details of links to all the Distributed Web Systems module's material held on Jorum and information about the module as well.

Subjects

ukoer | web system tutorial | distributed system tutorial | web systems tutorial | distributed system lecture | web systems lecture | web system lecture | introduction to distributed systems lecture | interprocess communications | tomcat reading material | distributed systems architecture | interprocess communications lecture | distributed systems architecture quiz | web systems | distributed system | web system | servlets practical | distributed systems lecture | servlets tutorial | distributed systems quiz | java networking practical | distributed objects and remote method invocation lecture | distributed objects and rmi quiz | time and global state lecture | distributed systems architectures | distributed web systems | distributed web system | remote methods invocation practical | distributed systems | java servlet | transactions and currency control quiz | coordination and agreement lecture | coordination and agreement quiz | time control practical | replication lecture | java servlets | election algorithms practical | mvc approach practical | introduction to distributed web systems | distributed file systems lecture | cookies tutorial | session tracking tutorial | distributed objects lecture | web system quiz | distributed system quiz | web system practical | distributed web systems practical | distributed web system practical | distributed web system quiz | interprocess communication practical | distributed systems tutorial | distributed system practical | distributed web systems tutorial | distributed web systems lecture | distributed web systems quiz | distributed systems practical | java servlet practical | java servlets practical | interprocess communication quiz | distributed systems architectures quiz | distributed objects | distributed systems architecture lecture | distributed web system lecture | java servlet reading material | web system reading material | java servlets reading material | web systems reading material | distributed web systems reading material | distributed web system reading material | v | introduction to distributed web systems lecture | java servlets lecture | distributed web system tutorial | cookies and session tracking tutorial | distributed object lecture | distributed objects and remote method invocation practical | remote method invocation lecture | web systems quiz | fundamental models in distributed systems quiz | interprocess communications practical | web systems practical | request data tutorial | response data tutorial | servlet tutorial | java servlets tutorial | fundamental models in distributed systems lecture | interprocess communications quiz | interprocess communication lecture | distributed systems architectures lecture | distributed system reading material | distributed systems reading material | java servlet lecture | distributed objects quiz | remote method invocation quiz | distributed objects and remote method invocation quiz | distributed object quiz | fundamental models in distributed systems practical | time and global states lecture | java server pages tutorial | java server page tutorial | jsp tutorial | time and global state quiz | time and global states quiz | remote method invocation practical | distributed objects practical | distributed object practical | transactions and currency control lecture | transaction lecture | concurrency lecture | concurrency control lecture | transaction quiz | concurrency quiz | concurrency control quiz | request data practical | response data practical | servlet practical | cookies practical | session tracking practical | cookies and session tracking practical | time and global state practical | time and global states practical | java server pages practical | java server page practical | jsp practical | java beans tutorial | replication quiz | p2p lecture | peer to peer systems lecture | peer to peer system lecture | model-view-controller architecture tutorial | p2p quiz | peer to peer systems quiz | peer to peer system quiz | coordination and agreement practical | java beans practical | name services lecture | name service lecture | name services quiz | name service quiz | model-view-controller architecture practical | web services lecture | semantic web lecture | web services quiz | semantic web quiz | web services practical | semantic web practical | distributed file systems quiz | interprocess communication | fundamental models in distributed systems | request data | response data | servlet | remote method invocation | distributed objects and remote method invocation | distributed object | cookies | session tracking | cookies and session tracking | time and global state | time and global states | java server pages | java server page | jsp | transactions and currency control | transaction | concurrency | concurrency control | coordination and agreement | replication | java beans | p2p | peer to peer systems | peer to peer system | model-view-controller architecture | name services | name service | web services | semantic web | distributed file systems | jdbc tutorial | java database connectivity tutorial | jdbc practical | java database connectivity practical | jdbc | java database connectivity | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.112 Architecture Design Fundamentals I: Nano-Machines (MIT) 4.112 Architecture Design Fundamentals I: Nano-Machines (MIT)

Description

Includes audio/video content: AV special element video. This is the second undergraduate architecture design studio, which introduces design logic and skills that enable design thinking, representation, and development. Through the lens of nano-scale machines, technologies, and phenomena, students are asked to explore techniques for describing form, space, and architecture. Exercises encourage various connotations of the "machine" and challenge students to translate conceptual strategies into more integrated design propositions through both digital and analog means. Includes audio/video content: AV special element video. This is the second undergraduate architecture design studio, which introduces design logic and skills that enable design thinking, representation, and development. Through the lens of nano-scale machines, technologies, and phenomena, students are asked to explore techniques for describing form, space, and architecture. Exercises encourage various connotations of the "machine" and challenge students to translate conceptual strategies into more integrated design propositions through both digital and analog means.

Subjects

architecture | architecture | architectural design | architectural design | nano-machine | nano-machine | programmable matter | programmable matter | drawing | drawing | scripting | scripting | casting | casting | modeling | modeling | self-assembly | self-assembly | self-replication | self-replication | Processing | Processing | generation | generation | machine | machine | space | space | scale | scale | void | void | bounding box | bounding box | system | system | habitation | habitation | architectural space | architectural space

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Avoiding Genomic Instability: DNA Replication, the Cell Cycle, and Cancer (MIT) 7.340 Avoiding Genomic Instability: DNA Replication, the Cell Cycle, and Cancer (MIT)

Description

In this class we will learn about how the process of DNA replication is regulated throughout the cell cycle and what happens when DNA replication goes awry. How does the cell know when and where to begin replicating its DNA? How does a cell prevent its DNA from being replicated more than once? How does damaged DNA cause the cell to arrest DNA replication until that damage has been repaired? And how is the duplication of the genome coordinated with other essential processes? We will examine both classical and current papers from the scientific literature to provide answers to these questions and to gain insights into how biologists have approached such problems. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored f In this class we will learn about how the process of DNA replication is regulated throughout the cell cycle and what happens when DNA replication goes awry. How does the cell know when and where to begin replicating its DNA? How does a cell prevent its DNA from being replicated more than once? How does damaged DNA cause the cell to arrest DNA replication until that damage has been repaired? And how is the duplication of the genome coordinated with other essential processes? We will examine both classical and current papers from the scientific literature to provide answers to these questions and to gain insights into how biologists have approached such problems. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored f

Subjects

cell | cell | genetic material | genetic material | cell death | cell death | tumorigenesis | tumorigenesis | mutations | mutations | genes | genes | DNA replication | DNA replication | cell cycle | cell cycle | damaged DNA | damaged DNA | genome | genome | tumor formation | tumor formation | anti-cancer drugs | anti-cancer drugs | viruses | viruses | cellular controls | cellular controls

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT) 7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized. This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | molecular biology | biochemical mechanisms | biochemical mechanisms | gene expression | gene expression | evolution | evolution | prokaryotic genome | prokaryotic genome | eukaryotic genomes | eukaryotic genomes | gene regulation | gene regulation | DNA replication | DNA replication | genetic recombination | genetic recombination | RNA processing | RNA processing | translation | translation | genome | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.440 Analysis of Biological Networks (MIT) BE.440 Analysis of Biological Networks (MIT)

Description

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemica This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemica

Subjects

systems | systems | networks | networks | biochemistry | biochemistry | biology | biology | chemistry | chemistry | chemotaxis | chemotaxis | lactation | lactation | interferon | interferon | response | response | DNA | DNA | replication | replication | translation | translation | transcription | transcription | RNA | RNA | IFN | IFN | signals | signals | signaling | signaling | cellular | cellular | receptor | receptor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.03 Genetics (MIT) 7.03 Genetics (MIT)

Description

This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease. This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subjects

genetics | genetics | gene | gene | DNA | DNA | RNA | RNA | mutation | mutation | genome | genome | Watson and Crick | Watson and Crick | replication | replication | transcription | transcription | DNA heliz | DNA heliz | double helix | double helix | mRNA | mRNA | messenger RNA | messenger RNA | translation | translation | ribosome | ribosome | promoter | promoter | genetic analysis | genetic analysis | alleles | alleles | genotype | genotype | wild type | wild type | phenotype | phenotype | haploid | haploid | diploid | diploid | auxotrophic mutation | auxotrophic mutation | homozygous | homozygous | heterozygous | heterozygous | recessive allele | recessive allele | dominant allele | dominant allele | complementation test | complementation test | locus | locus | incomplete dominance | incomplete dominance | incomplete penetrance | incomplete penetrance | true-breeding | true-breeding | gametes | gametes | codominant | codominant | meiosis | meiosis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.112 Architecture Design Fundamentals I: Nano-Machines (MIT) 4.112 Architecture Design Fundamentals I: Nano-Machines (MIT)

Description

This is the second undergraduate architecture design studio, which introduces design logic and skills that enable design thinking, representation, and development. Through the lens of nano-scale machines, technologies, and phenomena, students are asked to explore techniques for describing form, space, and architecture. Exercises encourage various connotations of the "machine" and challenge students to translate conceptual strategies into more integrated design propositions through both digital and analog means. This is the second undergraduate architecture design studio, which introduces design logic and skills that enable design thinking, representation, and development. Through the lens of nano-scale machines, technologies, and phenomena, students are asked to explore techniques for describing form, space, and architecture. Exercises encourage various connotations of the "machine" and challenge students to translate conceptual strategies into more integrated design propositions through both digital and analog means.

Subjects

architecture | architecture | architectural design | architectural design | nano-machine | nano-machine | programmable matter | programmable matter | drawing | drawing | scripting | scripting | casting | casting | modeling | modeling | self-assembly | self-assembly | self-replication | self-replication | Processing | Processing | generation | generation | machine | machine | space | space | scale | scale | void | void | bounding box | bounding box | system | system | habitation | habitation | architectural space | architectural space

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT) 7.28 Molecular Biology (MIT)

Description

This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized. This course covers a detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. The topics covered in lectures and readings of relevant literature include gene regulation, DNA replication, genetic recombination, and mRNA translation. In particular, the logic of experimental design and data analysis is emphasized.

Subjects

molecular biology | molecular biology | biochemical mechanisms | biochemical mechanisms | gene expression | gene expression | evolution | evolution | prokaryotic genome | prokaryotic genome | eukaryotic genomes | eukaryotic genomes | gene regulation | gene regulation | DNA replication | DNA replication | genetic recombination | genetic recombination | RNA processing | RNA processing | translation | translation | genome | genome

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.346 DNA Wars: How the Cell Strikes Back to Avoid Disease after Attacks on DNA (MIT) 7.346 DNA Wars: How the Cell Strikes Back to Avoid Disease after Attacks on DNA (MIT)

Description

A never-ending molecular war takes place in the nucleus of your cells, with DNA damage occurring at a rate of over 20,000 lesions per cell per day. Where does this damage come from, and what are its consequences? What are the differences in the molecular blueprint between individuals who can sustain attacks on DNA and remain healthy compared to those who become sick? This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching. A never-ending molecular war takes place in the nucleus of your cells, with DNA damage occurring at a rate of over 20,000 lesions per cell per day. Where does this damage come from, and what are its consequences? What are the differences in the molecular blueprint between individuals who can sustain attacks on DNA and remain healthy compared to those who become sick? This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subjects

DNA damage | DNA damage | DNA repair | DNA repair | mismatch repair | mismatch repair | direct reversal | direct reversal | nucleotide excision repair | nucleotide excision repair | base excision repair | base excision repair | double strand break repair | double strand break repair | nuclear DNA damage | nuclear DNA damage | mitochondrial DNA damage | mitochondrial DNA damage | Alkylating agents | Alkylating agents | replication errors | replication errors | mutations | mutations | epigenetics | epigenetics | Werner helicase activity | Werner helicase activity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT) 7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.826 Principles of Computer Systems (MIT) 6.826 Principles of Computer Systems (MIT)

Description

6.826 provides an introduction to the basic principles of computer systems, with emphasis on the use of rigorous techniques as an aid to understanding and building modern computing systems. Particular attention is paid to concurrent and distributed systems. Topics covered include: specification and verification, concurrent algorithms, synchronization, naming, networking, replication techniques (including distributed cache management), and principles and algorithms for achieving reliability. 6.826 provides an introduction to the basic principles of computer systems, with emphasis on the use of rigorous techniques as an aid to understanding and building modern computing systems. Particular attention is paid to concurrent and distributed systems. Topics covered include: specification and verification, concurrent algorithms, synchronization, naming, networking, replication techniques (including distributed cache management), and principles and algorithms for achieving reliability.

Subjects

computer system | computer system | concurrent system | concurrent system | distributed system | distributed system | specification | specification | verification | verification | concurrent algorithms | concurrent algorithms | synchronization | synchronization | naming | naming | networking | networking | replication techniques | replication techniques | distributed cache management | distributed cache management

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.346 DNA Wars: How the Cell Strikes Back to Avoid Disease after Attacks on DNA (MIT) 7.346 DNA Wars: How the Cell Strikes Back to Avoid Disease after Attacks on DNA (MIT)

Description

A never-ending molecular war takes place in the nucleus of your cells, with DNA damage occurring at a rate of over 20,000 lesions per cell per day. Where does this damage come from, and what are its consequences? What are the differences in the molecular blueprint between individuals who can sustain attacks on DNA and remain healthy compared to those who become sick? This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching. A never-ending molecular war takes place in the nucleus of your cells, with DNA damage occurring at a rate of over 20,000 lesions per cell per day. Where does this damage come from, and what are its consequences? What are the differences in the molecular blueprint between individuals who can sustain attacks on DNA and remain healthy compared to those who become sick? This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subjects

DNA damage | DNA damage | DNA repair | DNA repair | mismatch repair | mismatch repair | direct reversal | direct reversal | nucleotide excision repair | nucleotide excision repair | base excision repair | base excision repair | double strand break repair | double strand break repair | nuclear DNA damage | nuclear DNA damage | mitochondrial DNA damage | mitochondrial DNA damage | Alkylating agents | Alkylating agents | replication errors | replication errors | mutations | mutations | epigenetics | epigenetics | Werner helicase activity | Werner helicase activity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT) 7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | microorganisms | geochemistry | geochemistry | geochemical agents | geochemical agents | biosphere | biosphere | bacterial genetics | bacterial genetics | carbon metabolism | carbon metabolism | energy metabolism | energy metabolism | productivity | productivity | biogeochemical cycles | biogeochemical cycles | molecular evolution | molecular evolution | population genetics | population genetics | evolution | evolution | population growth | population growth | biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | ecology | ecology | communities | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In add The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In add

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.01SC Fundamentals of Biology (MIT) 7.01SC Fundamentals of Biology (MIT)

Description

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality. Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.

Subjects

amino acids | amino acids | carboxyl group | carboxyl group | amino group | amino group | side chains | side chains | polar | polar | hydrophobic | hydrophobic | primary structure | primary structure | secondary structure | secondary structure | tertiary structure | tertiary structure | quaternary structure | quaternary structure | x-ray crystallography | x-ray crystallography | alpha helix | alpha helix | beta sheet | beta sheet | ionic bond | ionic bond | non-polar bond | non-polar bond | van der Waals interactions | van der Waals interactions | proton gradient | proton gradient | cyclic photophosphorylation | cyclic photophosphorylation | sunlight | sunlight | ATP | ATP | chlorophyll | chlorophyll | chlorophyll a | chlorophyll a | electrons | electrons | hydrogen sulfide | hydrogen sulfide | biosynthesis | biosynthesis | non-cyclic photophosphorylation | non-cyclic photophosphorylation | photosystem II | photosystem II | photosystem I | photosystem I | cyanobacteria | cyanobacteria | chloroplast | chloroplast | stroma | stroma | thylakoid membrane | thylakoid membrane | Genetics | Genetics | Mendel | Mendel | Mendel's Laws | Mendel's Laws | cloning | cloning | restriction enzymes | restriction enzymes | vector | vector | insert DNA | insert DNA | ligase | ligase | library | library | E.Coli | E.Coli | phosphatase | phosphatase | yeast | yeast | transformation | transformation | ARG1 gene | ARG1 gene | ARG1 mutant yeast | ARG1 mutant yeast | yeast wild-type | yeast wild-type | cloning by complementation | cloning by complementation | Human Beta Globin gene | Human Beta Globin gene | protein tetramer | protein tetramer | vectors | vectors | antibodies | antibodies | human promoter | human promoter | splicing | splicing | mRNA | mRNA | cDNA | cDNA | reverse transcriptase | reverse transcriptase | plasmid | plasmid | electrophoresis | electrophoresis | DNA sequencing | DNA sequencing | primer | primer | template | template | capillary tube | capillary tube | laser detector | laser detector | human genome project | human genome project | recombinant DNA | recombinant DNA | clone | clone | primer walking | primer walking | subcloning | subcloning | computer assembly | computer assembly | shotgun sequencing | shotgun sequencing | open reading frame | open reading frame | databases | databases | polymerase chain reaction (PCR) | polymerase chain reaction (PCR) | polymerase | polymerase | nucleotides | nucleotides | Thermus aquaticus | Thermus aquaticus | Taq polymerase | Taq polymerase | thermocycler | thermocycler | resequencing | resequencing | in vitro fertilization | in vitro fertilization | pre-implantation diagnostics | pre-implantation diagnostics | forensics | forensics | genetic engineering | genetic engineering | DNA sequences | DNA sequences | therapeutic proteins | therapeutic proteins | E. coli | E. coli | disease-causing mutations | disease-causing mutations | cleavage of DNA | cleavage of DNA | bacterial transformation | bacterial transformation | recombinant DNA revolution | recombinant DNA revolution | biotechnology industry | biotechnology industry | Robert Swanson | Robert Swanson | toxin gene | toxin gene | pathogenic bacterium | pathogenic bacterium | biomedical research | biomedical research | S. Pyogenes | S. Pyogenes | origin of replication | origin of replication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allocwscholarcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT) 7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.28 Molecular Biology (MIT) 7.28 Molecular Biology (MIT)

Description

Molecular Biology - Detailed analysis of the biochemical mechanisms that control the maintenance, expression and evolution of prokaryotic and eukaryotic genomes.Topics covered in 7.28 lectures and readings of primary literature include:DNA replication,DNA repair,genetic recombination,gene expression,RNA processing, andtranslation.The logic of experimental design and data analysis is emphasized. Presentations include lectures, reading assignments and group discussions. Writing assignments, Problem Sets (ungraded) and review sessions also contribute to the course content. Molecular Biology - Detailed analysis of the biochemical mechanisms that control the maintenance, expression and evolution of prokaryotic and eukaryotic genomes.Topics covered in 7.28 lectures and readings of primary literature include:DNA replication,DNA repair,genetic recombination,gene expression,RNA processing, andtranslation.The logic of experimental design and data analysis is emphasized. Presentations include lectures, reading assignments and group discussions. Writing assignments, Problem Sets (ungraded) and review sessions also contribute to the course content.

Subjects

genetic recombination | genetic recombination | DNA replication | DNA replication | gene regulation | gene regulation | molecules | molecules

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Distributed Web Systems - Replication

Description

This lecture forms part of the "Replication" topic in the Distributed Web Systems module.

Subjects

ukoer | replication lecture | web systems lecture | distributed web systems lecture | distributed web system lecture | web system lecture | distributed system lecture | distributed systems lecture | replication | web systems | distributed web systems | distributed web system | web system | distributed system | distributed systems | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Distributed Web Systems - Replication

Description

This quiz forms part of the "Replication" topic in the Distributed Web Systems module.

Subjects

ukoer | replication quiz | web systems quiz | distributed web systems quiz | distributed web system quiz | web system quiz | distributed system quiz | distributed systems quiz | replication | web systems | distributed web systems | distributed web system | web system | distributed system | distributed systems | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata