Searching for reproductive biology : 7 results found | RSS Feed for this search

HST.071 Human Reproductive Biology (MIT) HST.071 Human Reproductive Biology (MIT)

Description

This course is designed to give the student a clear understanding of the pathophysiology of the menstrual cycle, fertilization, implantation, ovum growth development, differentiation and associated abnormalities. Disorders of fetal development including the principles of teratology and the mechanism of normal and abnormal parturition will be covered as well as the pathophysiology of the breast and disorders of lactation. Fetal asphyxia and its consequences will be reviewed with emphasis on the technology currently available for its detection. In addition the conclusion of the reproductive cycle, menopause, and the use of hormonal replacement will be covered. This course is designed to give the student a clear understanding of the pathophysiology of the menstrual cycle, fertilization, implantation, ovum growth development, differentiation and associated abnormalities. Disorders of fetal development including the principles of teratology and the mechanism of normal and abnormal parturition will be covered as well as the pathophysiology of the breast and disorders of lactation. Fetal asphyxia and its consequences will be reviewed with emphasis on the technology currently available for its detection. In addition the conclusion of the reproductive cycle, menopause, and the use of hormonal replacement will be covered.

Subjects

clinical case | clinical case | physiology | physiology | endocrinology | endocrinology | pathology | pathology | human reproduction | human reproduction | quantitative analysis | quantitative analysis | reproductive technology | reproductive technology | reproduction | reproduction | prenatal diagnosis | prenatal diagnosis | in vitro fertilization | in vitro fertilization | abortion | abortion | menopause | menopause | contraception | contraception | reproductive biology | reproductive biology | menstrual cycle | menstrual cycle | fertility | fertility | impotence | impotence | anatomy | anatomy | sexual differentiation | sexual differentiation | sex | sex | pregnancy | pregnancy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.345 The Science of Sperm (MIT) 7.345 The Science of Sperm (MIT)

Description

Sperm are tiny, haploid cells with a supremely important job: They deliver the paternal genome to the egg, helping create a zygote that develops into a new individual. For a human male, however, only a small fraction of the sperm produced will ever fertilize an egg. Sperm thus experience intense selective pressure: They must compete against each other, navigate a foreign environment in the female reproductive tract, and interact specifically and appropriately with the surface of the egg. These selective pressures can drive extreme changes in morphology and gene function over short evolutionary time scales, resulting in amazing diversity among species. In this course, we will explore the ways in which these unique evolutionary forces contribute to incredible specializations of sperm form an Sperm are tiny, haploid cells with a supremely important job: They deliver the paternal genome to the egg, helping create a zygote that develops into a new individual. For a human male, however, only a small fraction of the sperm produced will ever fertilize an egg. Sperm thus experience intense selective pressure: They must compete against each other, navigate a foreign environment in the female reproductive tract, and interact specifically and appropriately with the surface of the egg. These selective pressures can drive extreme changes in morphology and gene function over short evolutionary time scales, resulting in amazing diversity among species. In this course, we will explore the ways in which these unique evolutionary forces contribute to incredible specializations of sperm form an

Subjects

sperm | sperm | sperm biology | sperm biology | haploid cells | haploid cells | sperm development | sperm development | selective forces | selective forces | meiotic cell division | meiotic cell division | protamines | protamines | fertilization | fertilization | evolutionary analysis | evolutionary analysis | reproductive biology | reproductive biology | spermatogenesis | spermatogenesis | spermatogenic cycle | spermatogenic cycle | germline mutations | germline mutations | FGFR2 gene | FGFR2 gene | germ line selection | germ line selection | Fragile X syndrome | Fragile X syndrome | Meiotic recombination | Meiotic recombination | sperm bundling | sperm bundling | Sperm Cooperation | Sperm Cooperation | sperm competition | sperm competition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 Treating Infertility-- From Bench to Bedside and Bedside to Bench (MIT) 7.344 Treating Infertility-- From Bench to Bedside and Bedside to Bench (MIT)

Description

In the western world, approximately 10–15% of couples suffer from subfertility. Consequently, over 5 million babies have been born thanks to assisted reproductive technologies, and more than half of those have been born in the past six years alone. This class will cover the basic biology behind fertility and explore the etiology of infertility. We will highlight open questions in reproductive biology, familiarize students with both tried-and-true and emerging reproductive technologies, and explore the advantages and pitfalls of each. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in In the western world, approximately 10–15% of couples suffer from subfertility. Consequently, over 5 million babies have been born thanks to assisted reproductive technologies, and more than half of those have been born in the past six years alone. This class will cover the basic biology behind fertility and explore the etiology of infertility. We will highlight open questions in reproductive biology, familiarize students with both tried-and-true and emerging reproductive technologies, and explore the advantages and pitfalls of each. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in

Subjects

fertility | fertility | infertility | infertility | assisted reproductive technology | assisted reproductive technology | gonadal stem cells | gonadal stem cells | reproductive biology | reproductive biology | embryo cryopreservation | embryo cryopreservation | oocyte cryopreservation | oocyte cryopreservation | antral follicle counts | antral follicle counts | microdeletions | microdeletions | aneuploidy | aneuploidy | reproductive phenotypes | reproductive phenotypes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.071 Human Reproductive Biology (MIT)

Description

This course is designed to give the student a clear understanding of the pathophysiology of the menstrual cycle, fertilization, implantation, ovum growth development, differentiation and associated abnormalities. Disorders of fetal development including the principles of teratology and the mechanism of normal and abnormal parturition will be covered as well as the pathophysiology of the breast and disorders of lactation. Fetal asphyxia and its consequences will be reviewed with emphasis on the technology currently available for its detection. In addition the conclusion of the reproductive cycle, menopause, and the use of hormonal replacement will be covered.

Subjects

clinical case | physiology | endocrinology | pathology | human reproduction | quantitative analysis | reproductive technology | reproduction | prenatal diagnosis | in vitro fertilization | abortion | menopause | contraception | reproductive biology | menstrual cycle | fertility | impotence | anatomy | sexual differentiation | sex | pregnancy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 Treating Infertility-- From Bench to Bedside and Bedside to Bench (MIT)

Description

In the western world, approximately 10–15% of couples suffer from subfertility. Consequently, over 5 million babies have been born thanks to assisted reproductive technologies, and more than half of those have been born in the past six years alone. This class will cover the basic biology behind fertility and explore the etiology of infertility. We will highlight open questions in reproductive biology, familiarize students with both tried-and-true and emerging reproductive technologies, and explore the advantages and pitfalls of each. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in

Subjects

fertility | infertility | assisted reproductive technology | gonadal stem cells | reproductive biology | embryo cryopreservation | oocyte cryopreservation | antral follicle counts | microdeletions | aneuploidy | reproductive phenotypes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.345 The Science of Sperm (MIT)

Description

Sperm are tiny, haploid cells with a supremely important job: They deliver the paternal genome to the egg, helping create a zygote that develops into a new individual. For a human male, however, only a small fraction of the sperm produced will ever fertilize an egg. Sperm thus experience intense selective pressure: They must compete against each other, navigate a foreign environment in the female reproductive tract, and interact specifically and appropriately with the surface of the egg. These selective pressures can drive extreme changes in morphology and gene function over short evolutionary time scales, resulting in amazing diversity among species. In this course, we will explore the ways in which these unique evolutionary forces contribute to incredible specializations of sperm form an

Subjects

sperm | sperm biology | haploid cells | sperm development | selective forces | meiotic cell division | protamines | fertilization | evolutionary analysis | reproductive biology | spermatogenesis | spermatogenic cycle | germline mutations | FGFR2 gene | germ line selection | Fragile X syndrome | Meiotic recombination | sperm bundling | Sperm Cooperation | sperm competition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.071 Human Reproductive Biology (MIT)

Description

This course is designed to give the student a clear understanding of the pathophysiology of the menstrual cycle, fertilization, implantation, ovum growth development, differentiation and associated abnormalities. Disorders of fetal development including the principles of teratology and the mechanism of normal and abnormal parturition will be covered as well as the pathophysiology of the breast and disorders of lactation. Fetal asphyxia and its consequences will be reviewed with emphasis on the technology currently available for its detection. In addition the conclusion of the reproductive cycle, menopause, and the use of hormonal replacement will be covered.

Subjects

clinical case | physiology | endocrinology | pathology | human reproduction | quantitative analysis | reproductive technology | reproduction | prenatal diagnosis | in vitro fertilization | abortion | menopause | contraception | reproductive biology | menstrual cycle | fertility | impotence | anatomy | sexual differentiation | sex | pregnancy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata