Searching for response : 156 results found | RSS Feed for this search

Description

Bacteria survive in almost all environments on Earth, including some considered extremely harsh. From the steaming hot springs of Yellowstone to the frozen tundra of the arctic to the barren deserts of Chile, microbes have been found thriving. Their tenacity to survive in such extreme and varied conditions allows them to play fundamental roles in global nutrient cycling. Microbes also cause a wide range of human diseases and can survive inhospitable conditions found in the human body. In this course, we will examine the molecular systems that bacteria use to adapt to changes in their environment. We will consider stresses commonly encountered, such as starvation, oxidative stress and heat shock, and also discuss how the adaptive responses affect the evolution of the bacteria. This course Bacteria survive in almost all environments on Earth, including some considered extremely harsh. From the steaming hot springs of Yellowstone to the frozen tundra of the arctic to the barren deserts of Chile, microbes have been found thriving. Their tenacity to survive in such extreme and varied conditions allows them to play fundamental roles in global nutrient cycling. Microbes also cause a wide range of human diseases and can survive inhospitable conditions found in the human body. In this course, we will examine the molecular systems that bacteria use to adapt to changes in their environment. We will consider stresses commonly encountered, such as starvation, oxidative stress and heat shock, and also discuss how the adaptive responses affect the evolution of the bacteria. This courseSubjects

bacteria | bacteria | microbes | microbes | signal transduction pathways | signal transduction pathways | cellular response | cellular response | model systems | model systems | Escherichia coli | Escherichia coli | Bacillus subtilis | Bacillus subtilis | oxidative stress | oxidative stress | starvation | starvation | heat shock | heat shock | dormant state | dormant state | microbial stress response | microbial stress response | bacterial genetics | bacterial genetics | microbiology | microbiology | sporulation | sporulation | sRNAs | sRNAs | histidine kinases | histidine kinases | response regulators | response regulators | mRNAs | mRNAs | RpoS | RpoS | small molecules | small molecules | efflux pumps | efflux pumps | Pseudomonas aeruginosa | Pseudomonas aeruginosaLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This class teaches the fundamentals of signals and information theory with emphasis on modeling audio/visual messages and physiologically derived signals, and the human source or recipient. Topics include linear systems, difference equations, Z-transforms, sampling and sampling rate conversion, convolution, filtering, modulation, Fourier analysis, entropy, noise, and Shannon's fundamental theorems. Additional topics may include data compression, filter design, and feature detection. The undergraduate subject MAS.160 meets with the two half-semester graduate subjects MAS.510 and MAS.511, but assignments differ. This class teaches the fundamentals of signals and information theory with emphasis on modeling audio/visual messages and physiologically derived signals, and the human source or recipient. Topics include linear systems, difference equations, Z-transforms, sampling and sampling rate conversion, convolution, filtering, modulation, Fourier analysis, entropy, noise, and Shannon's fundamental theorems. Additional topics may include data compression, filter design, and feature detection. The undergraduate subject MAS.160 meets with the two half-semester graduate subjects MAS.510 and MAS.511, but assignments differ.Subjects

audio | audio | visual | visual | video | video | A/V | A/V | digital media | digital media | digital audio | digital audio | digital video | digital video | photography | photography | digitial photography | digitial photography | spectrum | spectrum | Spectrum plot | Spectrum plot | amplitude modulation | amplitude modulation | AM | AM | Fourier series | Fourier series | frequency modulation | frequency modulation | FM | FM | orthogonality | orthogonality | Walsh functions | Walsh functions | basis sets. Sampling theorem | basis sets. Sampling theorem | aliasing | aliasing | reconstruction | reconstruction | FFT | FFT | DFT | DFT | DTFT | DTFT | z-transform | z-transform | IIR | IIR | frequency response | frequency response | filter | filter | filter response | filter response | impulse response | impulse response | noise | noise | communications system | communications system | communications theory | communications theory | information theory | information theory | communication channel | communication channel | coding | coding | error correction | error correction | DSP | DSP | signal processing | signal processing | digital signal processing | digital signal processingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.31 Feedback Control Systems (MIT) 16.31 Feedback Control Systems (MIT)

Description

This course covers the fundamentals of control design and analysis using state-space methods. This includes both the practical and theoretical aspects of the topic. By the end of the course, the student should be able to design controllers using state-space methods and evaluate whether these controllers are robust. This course covers the fundamentals of control design and analysis using state-space methods. This includes both the practical and theoretical aspects of the topic. By the end of the course, the student should be able to design controllers using state-space methods and evaluate whether these controllers are robust.Subjects

linear system response | linear system response | aircraft control | aircraft control | frequency response methods | frequency response methods | Nyquist stability theorem | Nyquist stability theorem | bode plots | bode plots | state-space systems | state-space systems | full-state feedback control | full-state feedback control | open-loop estimators | open-loop estimators | closed-loop estimators | closed-loop estimators | robustness analysis | robustness analysis | small gain theorem | small gain theoremLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.512 Theory of Solids II (MIT) 8.512 Theory of Solids II (MIT)

Description

This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory. This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory.Subjects

Linear response theory | Linear response theory | Fluctuation dissipation theorem | Fluctuation dissipation theorem | Scattering experiment | Scattering experiment | f-sum rule | f-sum rule | Physics of disorder | Physics of disorder | Kubo formula for conductivity | Kubo formula for conductivity | Conductance and sensitivity to boundary conditions | Conductance and sensitivity to boundary conditions | Scaling theory of localization | Scaling theory of localization | Mott variable range hopping | Mott variable range hopping | Superconductor | Superconductor | Transverse response | Transverse response | Landau diamagnetism | Landau diamagnetism | Microscopic derivation of London equation | Microscopic derivation of London equation | Effect of disorder | Effect of disorder | Quasiparticles and coherence factors | Quasiparticles and coherence factors | Tunneling and Josephson effect | Tunneling and Josephson effect | Magnetism | Magnetism | Local moment magnetism | Local moment magnetism | exchange interaction | exchange interaction | Ferro- and anti-ferro magnet and spin wave theory | Ferro- and anti-ferro magnet and spin wave theory | Band magnetism | Band magnetism | Stoner theory | Stoner theory | spin density wave | spin density wave | Local moment in metals | Local moment in metals | Friedel sum rule | Friedel sum rule | Friedel-Anderson model | Friedel-Anderson model | Kondo problem | Kondo problem | Fermi liquid theory | Fermi liquid theory | Electron Green?s function | Electron Green?s functionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataRES.6-008 Digital Signal Processing (MIT) RES.6-008 Digital Signal Processing (MIT)

Description

Includes audio/video content: AV lectures. This course was developed in 1987 by the MIT Center for Advanced Engineering Studies. It was designed as a distance-education course for engineers and scientists in the workplace. Advances in integrated circuit technology have had a major impact on the technical areas to which digital signal processing techniques and hardware are being applied. A thorough understanding of digital signal processing fundamentals and techniques is essential for anyone whose work is concerned with signal processing applications. Digital Signal Processing begins with a discussion of the analysis and representation of discrete-time signal systems, including discrete-time convolution, difference equations, the z-transform, and the discrete-time Fourier transform. Emphasi Includes audio/video content: AV lectures. This course was developed in 1987 by the MIT Center for Advanced Engineering Studies. It was designed as a distance-education course for engineers and scientists in the workplace. Advances in integrated circuit technology have had a major impact on the technical areas to which digital signal processing techniques and hardware are being applied. A thorough understanding of digital signal processing fundamentals and techniques is essential for anyone whose work is concerned with signal processing applications. Digital Signal Processing begins with a discussion of the analysis and representation of discrete-time signal systems, including discrete-time convolution, difference equations, the z-transform, and the discrete-time Fourier transform. EmphasiSubjects

discrete-time signals and systems | discrete-time signals and systems | convolution difference equations | convolution difference equations | z-transform | z-transform | digital network structure | digital network structure | recursive infinite impulse response | recursive infinite impulse response | nonrecursive finite impulse response | nonrecursive finite impulse response | digital filter design | digital filter design | fast Fourier transform algorithm | fast Fourier transform algorithm | discrete Fourier transform | discrete Fourier transformLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.512 Theory of Solids II (MIT) 8.512 Theory of Solids II (MIT)

Description

This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory. This is the second term of a theoretical treatment of the physics of solids. Topics covered include linear response theory; the physics of disorder; superconductivity; the local moment and itinerant magnetism; the Kondo problem and Fermi liquid theory.Subjects

Linear response theory | Linear response theory | Fluctuation dissipation theorem | Fluctuation dissipation theorem | Scattering experiment | Scattering experiment | f-sum rule | f-sum rule | Physics of disorder | Physics of disorder | Kubo formula for conductivity | Kubo formula for conductivity | Conductance and sensitivity to boundary conditions | Conductance and sensitivity to boundary conditions | Scaling theory of localization | Scaling theory of localization | Mott variable range hopping | Mott variable range hopping | Superconductor | Superconductor | Transverse response | Transverse response | Landau diamagnetism | Landau diamagnetism | Microscopic derivation of London equation | Microscopic derivation of London equation | Effect of disorder | Effect of disorder | Quasiparticles and coherence factors | Quasiparticles and coherence factors | Tunneling and Josephson effect | Tunneling and Josephson effect | Magnetism | Magnetism | Local moment magnetism | Local moment magnetism | exchange interaction | exchange interaction | Ferro- and anti-ferro magnet and spin wave theory | Ferro- and anti-ferro magnet and spin wave theory | Band magnetism | Band magnetism | Stoner theory | Stoner theory | spin density wave | spin density wave | Local moment in metals | Local moment in metals | Friedel sum rule | Friedel sum rule | Friedel-Anderson model | Friedel-Anderson model | Kondo problem | Kondo problem | Fermi liquid theory | Fermi liquid theory | Electron Green?s function | Electron Green?s functionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata22.55J Principles of Radiation Interactions (MIT) 22.55J Principles of Radiation Interactions (MIT)

Description

The central theme of this course is the interaction of radiation with biological material. The course is intended to provide a broad understanding of how different types of radiation deposit energy, including the creation and behavior of secondary radiations; of how radiation affects cells and why the different types of radiation have very different biological effects. Topics will include: the effects of radiation on biological systems including DNA damage; in vitro cell survival models; and in vivo mammalian systems. The course covers radiation therapy, radiation syndromes in humans and carcinogenesis. Environmental radiation sources on earth and in space, and aspects of radiation protection are also discussed. Examples from the current literature will be used to supplement lecture materi The central theme of this course is the interaction of radiation with biological material. The course is intended to provide a broad understanding of how different types of radiation deposit energy, including the creation and behavior of secondary radiations; of how radiation affects cells and why the different types of radiation have very different biological effects. Topics will include: the effects of radiation on biological systems including DNA damage; in vitro cell survival models; and in vivo mammalian systems. The course covers radiation therapy, radiation syndromes in humans and carcinogenesis. Environmental radiation sources on earth and in space, and aspects of radiation protection are also discussed. Examples from the current literature will be used to supplement lecture materiSubjects

Interaction of radiation with biological material | Interaction of radiation with biological material | how different types of radiation deposit energy | how different types of radiation deposit energy | secondary radiations | secondary radiations | how radiation affects cells | how radiation affects cells | biological effects | biological effects | effects of radiation on biological systems | effects of radiation on biological systems | DNA damage | DNA damage | in vitro cell survival models | in vitro cell survival models | in vivo mammalian systems | in vivo mammalian systems | radiation therapy | radiation therapy | radiation syndromes in humans | radiation syndromes in humans | carcinogenesis | carcinogenesis | Environmental radiation sources | Environmental radiation sources | radiation protection | radiation protection | cells | cells | tissues | tissues | radiation interactions | radiation interactions | radiation chemistry | radiation chemistry | LET | LET | tracks | tracks | chromosome damags | chromosome damags | in vivo | in vivo | in vitro | in vitro | cell survival curves | cell survival curves | dose response | dose response | RBE | RBE | clustered damage | clustered damage | radiation response | radiation response | tumor kinetics | tumor kinetics | tumor radiobiology | tumor radiobiology | fractionation | fractionation | protons | protons | alpha particles | alpha particles | whole body exposure | whole body exposure | chronic exposure | chronic exposure | space | space | microbeams | microbeams | radon | radon | background radiation | background radiation | 22.55 | 22.55 | HST.560 | HST.560License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataHIV immunology for Vaccine Design

Description

Dr Seph Borrow tells us how her research on HIV Immunology helps design better vaccines. There is an urgent need for vaccines to combat persistent infections like HIV. Dr Seph Borrow is studying factors affecting virus control by HIV-specific CD8+ T cells, to inform the design of T cell-based HIV vaccines. She is also exploring the possibility of harnessing innate immune responses to combat HIV. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Subjects

protective immunity | immune response | hiv | innate response | protective immunity | immune response | hiv | innate responseLicense

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/audio.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataHIV immunology for Vaccine Design

Description

Dr Seph Borrow tells us how her research on HIV Immunology helps design better vaccines. There is an urgent need for vaccines to combat persistent infections like HIV. Dr Seph Borrow is studying factors affecting virus control by HIV-specific CD8+ T cells, to inform the design of T cell-based HIV vaccines. She is also exploring the possibility of harnessing innate immune responses to combat HIV. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Subjects

protective immunity | immune response | hiv | innate response | protective immunity | immune response | hiv | innate responseLicense

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataReadme file for Distributed Web Systems

Description

This readme file contains details of links to all the Distributed Web Systems module's material held on Jorum and information about the module as well.Subjects

ukoer | web system tutorial | distributed system tutorial | web systems tutorial | distributed system lecture | web systems lecture | web system lecture | introduction to distributed systems lecture | interprocess communications | tomcat reading material | distributed systems architecture | interprocess communications lecture | distributed systems architecture quiz | web systems | distributed system | web system | servlets practical | distributed systems lecture | servlets tutorial | distributed systems quiz | java networking practical | distributed objects and remote method invocation lecture | distributed objects and rmi quiz | time and global state lecture | distributed systems architectures | distributed web systems | distributed web system | remote methods invocation practical | distributed systems | java servlet | transactions and currency control quiz | coordination and agreement lecture | coordination and agreement quiz | time control practical | replication lecture | java servlets | election algorithms practical | mvc approach practical | introduction to distributed web systems | distributed file systems lecture | cookies tutorial | session tracking tutorial | distributed objects lecture | web system quiz | distributed system quiz | web system practical | distributed web systems practical | distributed web system practical | distributed web system quiz | interprocess communication practical | distributed systems tutorial | distributed system practical | distributed web systems tutorial | distributed web systems lecture | distributed web systems quiz | distributed systems practical | java servlet practical | java servlets practical | interprocess communication quiz | distributed systems architectures quiz | distributed objects | distributed systems architecture lecture | distributed web system lecture | java servlet reading material | web system reading material | java servlets reading material | web systems reading material | distributed web systems reading material | distributed web system reading material | v | introduction to distributed web systems lecture | java servlets lecture | distributed web system tutorial | cookies and session tracking tutorial | distributed object lecture | distributed objects and remote method invocation practical | remote method invocation lecture | web systems quiz | fundamental models in distributed systems quiz | interprocess communications practical | web systems practical | request data tutorial | response data tutorial | servlet tutorial | java servlets tutorial | fundamental models in distributed systems lecture | interprocess communications quiz | interprocess communication lecture | distributed systems architectures lecture | distributed system reading material | distributed systems reading material | java servlet lecture | distributed objects quiz | remote method invocation quiz | distributed objects and remote method invocation quiz | distributed object quiz | fundamental models in distributed systems practical | time and global states lecture | java server pages tutorial | java server page tutorial | jsp tutorial | time and global state quiz | time and global states quiz | remote method invocation practical | distributed objects practical | distributed object practical | transactions and currency control lecture | transaction lecture | concurrency lecture | concurrency control lecture | transaction quiz | concurrency quiz | concurrency control quiz | request data practical | response data practical | servlet practical | cookies practical | session tracking practical | cookies and session tracking practical | time and global state practical | time and global states practical | java server pages practical | java server page practical | jsp practical | java beans tutorial | replication quiz | p2p lecture | peer to peer systems lecture | peer to peer system lecture | model-view-controller architecture tutorial | p2p quiz | peer to peer systems quiz | peer to peer system quiz | coordination and agreement practical | java beans practical | name services lecture | name service lecture | name services quiz | name service quiz | model-view-controller architecture practical | web services lecture | semantic web lecture | web services quiz | semantic web quiz | web services practical | semantic web practical | distributed file systems quiz | interprocess communication | fundamental models in distributed systems | request data | response data | servlet | remote method invocation | distributed objects and remote method invocation | distributed object | cookies | session tracking | cookies and session tracking | time and global state | time and global states | java server pages | java server page | jsp | transactions and currency control | transaction | concurrency | concurrency control | coordination and agreement | replication | java beans | p2p | peer to peer systems | peer to peer system | model-view-controller architecture | name services | name service | web services | semantic web | distributed file systems | jdbc tutorial | java database connectivity tutorial | jdbc practical | java database connectivity practical | jdbc | java database connectivity | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata7.345 Survival in Extreme Conditions: The Bacterial Stress Response (MIT)

Description

Bacteria survive in almost all environments on Earth, including some considered extremely harsh. From the steaming hot springs of Yellowstone to the frozen tundra of the arctic to the barren deserts of Chile, microbes have been found thriving. Their tenacity to survive in such extreme and varied conditions allows them to play fundamental roles in global nutrient cycling. Microbes also cause a wide range of human diseases and can survive inhospitable conditions found in the human body. In this course, we will examine the molecular systems that bacteria use to adapt to changes in their environment. We will consider stresses commonly encountered, such as starvation, oxidative stress and heat shock, and also discuss how the adaptive responses affect the evolution of the bacteria. This courseSubjects

bacteria | microbes | signal transduction pathways | cellular response | model systems | Escherichia coli | Bacillus subtilis | oxidative stress | starvation | heat shock | dormant state | microbial stress response | bacterial genetics | microbiology | sporulation | sRNAs | histidine kinases | response regulators | mRNAs | RpoS | small molecules | efflux pumps | Pseudomonas aeruginosaLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataMAS.160 Signals, Systems and Information for Media Technology (MIT)

Description

This class teaches the fundamentals of signals and information theory with emphasis on modeling audio/visual messages and physiologically derived signals, and the human source or recipient. Topics include linear systems, difference equations, Z-transforms, sampling and sampling rate conversion, convolution, filtering, modulation, Fourier analysis, entropy, noise, and Shannon's fundamental theorems. Additional topics may include data compression, filter design, and feature detection. The undergraduate subject MAS.160 meets with the two half-semester graduate subjects MAS.510 and MAS.511, but assignments differ.Subjects

audio | visual | video | A/V | digital media | digital audio | digital video | photography | digitial photography | spectrum | Spectrum plot | amplitude modulation | AM | Fourier series | frequency modulation | FM | orthogonality | Walsh functions | basis sets. Sampling theorem | aliasing | reconstruction | FFT | DFT | DTFT | z-transform | IIR | frequency response | filter | filter response | impulse response | noise | communications system | communications theory | information theory | communication channel | coding | error correction | DSP | signal processing | digital signal processingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataElectronic Components and Circuits Electronic Components and Circuits

Description

Operating principle, models and applications of basic semiconductors electronic components (diodes, bipolar transistors and field effect transistors), including the bias circuits. In addition, the concepts related to electronic analog amplification stages (small signal gain, input and output impedances and frequency response). Finally, the characteristics of operational amplifiers (OA) as analog integrated circuits and some of the most important AO applications. Operating principle, models and applications of basic semiconductors electronic components (diodes, bipolar transistors and field effect transistors), including the bias circuits. In addition, the concepts related to electronic analog amplification stages (small signal gain, input and output impedances and frequency response). Finally, the characteristics of operational amplifiers (OA) as analog integrated circuits and some of the most important AO applications.Subjects

polarization | polarization | Single-stage amplification circuits | Single-stage amplification circuits | electronic circuits analysis | electronic circuits analysis | semiconductor devices | semiconductor devices | Frequency response of transistor amplifier | Frequency response of transistor amplifier | electronic circuits | electronic circuits | ía Electrónica | ía Electrónica | Multi-stage amplifiers | Multi-stage amplifiers | electronic components | electronic components | Electronic Amplification | Electronic Amplification | Operational Amplifier | Operational Amplifier | 2010 | 2010 | ía de Sistemas Audiovisuales | ía de Sistemas AudiovisualesLicense

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_allAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.811 Tropical Meteorology (MIT) 12.811 Tropical Meteorology (MIT)

Description

This course describes the behavior and dynamics of the tropical troposphere, from the large-scale energy balance down to cumulus convection and tropical cyclones. Topics include: Radiative-convective equilibrium; the Hadley and walker circulation; monsoons; tropical boundary layers; theory of the response of the tropical atmosphere to localized sea-surface temperature anomalies; intraseasonal oscillations; equatorial waves; El Niño/Southern Oscillation; easterly waves; and tropical cyclones. This course describes the behavior and dynamics of the tropical troposphere, from the large-scale energy balance down to cumulus convection and tropical cyclones. Topics include: Radiative-convective equilibrium; the Hadley and walker circulation; monsoons; tropical boundary layers; theory of the response of the tropical atmosphere to localized sea-surface temperature anomalies; intraseasonal oscillations; equatorial waves; El Niño/Southern Oscillation; easterly waves; and tropical cyclones.Subjects

Radiative-convective equilibrium | Radiative-convective equilibrium | the Hadley and walker circulation | the Hadley and walker circulation | monsoons | monsoons | tropical boundary layers | tropical boundary layers | theory of the response of the tropical atmosphere to localized sea-surface temperature anomalies | theory of the response of the tropical atmosphere to localized sea-surface temperature anomalies | intraseasonal oscillations | intraseasonal oscillations | equatorial waves | equatorial waves | El Ni?o/Southern Oscillation | El Ni?o/Southern Oscillation | easterly waves | easterly waves | tropical cyclones. | tropical cyclones. | tropical cyclones | tropical cyclonesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course introduces scientific, economic, and ecological issues underlying the threat of global climate change, and the institutions engaged in negotiating an international response. The focus is on developing an integrated approach to analysis of climate change processes, and assessment of proposed policy measures, drawing on research and model development within the MIT Joint Program on the Science and Policy of Global Change. This course introduces scientific, economic, and ecological issues underlying the threat of global climate change, and the institutions engaged in negotiating an international response. The focus is on developing an integrated approach to analysis of climate change processes, and assessment of proposed policy measures, drawing on research and model development within the MIT Joint Program on the Science and Policy of Global Change.Subjects

15.023 | 15.023 | 12.848 | 12.848 | ESD.128 | ESD.128 | scientific | economic | and ecological issues underlying the threat of global climate change | scientific | economic | and ecological issues underlying the threat of global climate change | institutions engaged in negotiating an international response | institutions engaged in negotiating an international response | analysis of climate change processes | analysis of climate change processes | assessment of proposed policy measures | assessment of proposed policy measures | research | research | model development | model development | MIT Joint Program on the Science and Policy of Global Change | MIT Joint Program on the Science and Policy of Global ChangeLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The class introduces scientific, economic, and ecological issues underlying the threat of global climate change, and the institutions engaged in negotiating an international response. It also develops an integrated approach to analysis of climate change processes, and assessment of proposed policy measures, drawing on research and model development within the MIT Joint Program on the Science and Policy of Global Change. The class introduces scientific, economic, and ecological issues underlying the threat of global climate change, and the institutions engaged in negotiating an international response. It also develops an integrated approach to analysis of climate change processes, and assessment of proposed policy measures, drawing on research and model development within the MIT Joint Program on the Science and Policy of Global Change.Subjects

global climate change | global climate change | economics | science and policy | economics | science and policy | ecological issues | ecological issues | threat | threat | international response | international response | climate change processes | climate change processes | policy measures | policy measures | research and model development | research and model development | MIT Joint Program on the Science and Policy of Global Change | MIT Joint Program on the Science and Policy of Global ChangeLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. 6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points.Subjects

circuit | circuit | electronic | electronic | abstraction | abstraction | lumped circuit | lumped circuit | digital | digital | amplifier | amplifier | differential equations | differential equations | time behavior | time behavior | energy storage | energy storage | semiconductor diode | semiconductor diode | field-effect | field-effect | field-effect transistor | field-effect transistor | resistor | resistor | source | source | inductor | inductor | capacitor | capacitor | diode | diode | series-parallel reduction | series-parallel reduction | voltage | voltage | current divider | current divider | node method | node method | linearity | linearity | superposition | superposition | Thevenin-Norton equivalent | Thevenin-Norton equivalent | power flow | power flow | Boolean algebra | Boolean algebra | binary signal | binary signal | MOSFET | MOSFET | noise margin | noise margin | singularity functions | singularity functions | sinusoidal-steady-state | sinusoidal-steady-state | impedance | impedance | frequency response curves | frequency response curves | operational amplifier | operational amplifier | Op-Amp | Op-Amp | negative feedback | negative feedback | positive feedback | positive feedbackLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.74 Introductory Quantum Mechanics II (MIT) 5.74 Introductory Quantum Mechanics II (MIT)

Description

This class covers topics in time-dependent quantum mechanics, molecular spectroscopy, and relaxation, with an emphasis on descriptions applicable to condensed phase problems and a statistical description of ensembles. This class covers topics in time-dependent quantum mechanics, molecular spectroscopy, and relaxation, with an emphasis on descriptions applicable to condensed phase problems and a statistical description of ensembles.Subjects

introductory quantum mechanics | introductory quantum mechanics | time-dependent quantum mechanics | time-dependent quantum mechanics | spectroscopy | spectroscopy | perturbation theory | perturbation theory | two-level systems | two-level systems | light-matter interactions | light-matter interactions | correlation functions | correlation functions | linear response theory | linear response theory | nonlinear spectroscopy | nonlinear spectroscopyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls filesSubjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataBE.440 Analysis of Biological Networks (MIT) BE.440 Analysis of Biological Networks (MIT)

Description

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemica This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. ChemicaSubjects

systems | systems | networks | networks | biochemistry | biochemistry | biology | biology | chemistry | chemistry | chemotaxis | chemotaxis | lactation | lactation | interferon | interferon | response | response | DNA | DNA | replication | replication | translation | translation | transcription | transcription | RNA | RNA | IFN | IFN | signals | signals | signaling | signaling | cellular | cellular | receptor | receptorLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.685 Electric Machines (MIT) 6.685 Electric Machines (MIT)

Description

6.685 explores concepts in electromechanics, using electric machinery as examples. It teaches an understanding of principles and analysis of electromechanical systems. By the end of the course, students are capable of doing electromechanical design of the major classes of rotating and linear electric machines, and have an understanding of the principles of the energy conversion parts of Mechatronics. In addition to design, students learn how to estimate the dynamic parameters of electric machines and understand what the implications of those parameters are on the performance of systems incorporating those machines. 6.685 explores concepts in electromechanics, using electric machinery as examples. It teaches an understanding of principles and analysis of electromechanical systems. By the end of the course, students are capable of doing electromechanical design of the major classes of rotating and linear electric machines, and have an understanding of the principles of the energy conversion parts of Mechatronics. In addition to design, students learn how to estimate the dynamic parameters of electric machines and understand what the implications of those parameters are on the performance of systems incorporating those machines.Subjects

electric | electric | machine | machine | transformers | transformers | electromechanical | electromechanical | transducers | transducers | rotating | rotating | linear electric machines | linear electric machines | lumped parameter | lumped parameter | dc | dc | induction | induction | synchronous | synchronous | energy conversion | energy conversion | electromechanics | electromechanics | Mechatronics | Mechatronics | Electromechanical transducers | Electromechanical transducers | rotating electric machines | rotating electric machines | lumped-parameter elecromechanics | lumped-parameter elecromechanics | interaction electromechanics | interaction electromechanics | device characteristics | device characteristics | energy conversion density | energy conversion density | efficiency | efficiency | system interaction characteristics | system interaction characteristics | regulation | regulation | stability | stability | controllability | controllability | response | response | electric machines | electric machines | drive systems | drive systems | electric machinery | electric machinery | electromechanical systems | electromechanical systems | design | design | dynamic parameters | dynamic parameters | phenomena | phenomena | interactions | interactions | classical mechanics | classical mechanicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.74 Introductory Quantum Mechanics II (MIT) 5.74 Introductory Quantum Mechanics II (MIT)

Description

5.74 explores time-dependent quantum mechanics and spectroscopy. Topics covered include: perturbation theory, two-level systems, light-matter interactions, relaxation in quantum systems, correlation functions and linear response theory, and nonlinear spectroscopy. The instructor would like to acknowledge Anne Hudson for assisting in preparation of the 5.74 notes. 5.74 explores time-dependent quantum mechanics and spectroscopy. Topics covered include: perturbation theory, two-level systems, light-matter interactions, relaxation in quantum systems, correlation functions and linear response theory, and nonlinear spectroscopy. The instructor would like to acknowledge Anne Hudson for assisting in preparation of the 5.74 notes.Subjects

introductory quantum mechanics | introductory quantum mechanics | time-dependent quantum mechanics | time-dependent quantum mechanics | spectroscopy | spectroscopy | perturbation theory | perturbation theory | two-level systems | two-level systems | light-matter interactions | light-matter interactions | correlation functions | correlation functions | linear response theory | linear response theory | nonlinear spectroscopy | nonlinear spectroscopyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site. The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site.Subjects

energetics | energetics | materials structure and symmetry: applied fields | materials structure and symmetry: applied fields | mechanics and physics of solids and soft materials | mechanics and physics of solids and soft materials | linear algebra | linear algebra | orthonormal basis | orthonormal basis | eigenvalues | eigenvalues | eigenvectors | eigenvectors | quadratic forms | quadratic forms | tensor operations | tensor operations | symmetry operations | symmetry operations | calculus | calculus | complex analysis | complex analysis | differential equations | differential equations | theory of distributions | theory of distributions | fourier analysis | fourier analysis | random walks | random walks | mathematical technicques | mathematical technicques | materials science | materials science | materials engineering | materials engineering | materials structure | materials structure | symmetry | symmetry | applied fields | applied fields | materials response | materials response | solids mechanics | solids mechanics | solids physics | solids physics | soft materials | soft materials | multi-variable calculus | multi-variable calculus | ordinary differential equations | ordinary differential equations | partial differential equations | partial differential equations | applied mathematics | applied mathematics | mathematical techniques | mathematical techniquesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata