Searching for scale-free networks : 6 results found | RSS Feed for this search

6.895 Computational Biology: Genomes, Networks, Evolution (MIT) 6.895 Computational Biology: Genomes, Networks, Evolution (MIT)

Description

This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include:Genomes: Biological Sequence Analysis, Hidden Markov Models, Gene Finding, RNA Folding, Sequence Alignment, Genome Assembly.Networks: Gene Expression Analysis, Regulatory Motifs, Graph Algorithms, Scale-free Networks, Network Motifs, Network Evolution.Evolution: Comparative Genomics, Phylogenetics, Genome Duplication, Genome Rearrangements, Evolutionary Theory, Rapid Evolution. This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include:Genomes: Biological Sequence Analysis, Hidden Markov Models, Gene Finding, RNA Folding, Sequence Alignment, Genome Assembly.Networks: Gene Expression Analysis, Regulatory Motifs, Graph Algorithms, Scale-free Networks, Network Motifs, Network Evolution.Evolution: Comparative Genomics, Phylogenetics, Genome Duplication, Genome Rearrangements, Evolutionary Theory, Rapid Evolution.

Subjects

Genomes: Biological sequence analysis | Genomes: Biological sequence analysis | hidden Markov models | hidden Markov models | gene finding | gene finding | RNA folding | RNA folding | sequence alignment | sequence alignment | genome assembly | genome assembly | Networks: Gene expression analysis | Networks: Gene expression analysis | regulatory motifs | regulatory motifs | graph algorithms | graph algorithms | scale-free networks | scale-free networks | network motifs | network motifs | network evolution | network evolution | Evolution: Comparative genomics | Evolution: Comparative genomics | phylogenetics | phylogenetics | genome duplication | genome duplication | genome rearrangements | genome rearrangements | evolutionary theory | evolutionary theory | rapid evolution | rapid evolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.096 Algorithms for Computational Biology (MIT) 6.096 Algorithms for Computational Biology (MIT)

Description

This course is offered to undergraduates and addresses several algorithmic challenges in computational biology. The principles of algorithmic design for biological datasets are studied and existing algorithms analyzed for application to real datasets. Topics covered include: biological sequence analysis, gene identification, regulatory motif discovery, genome assembly, genome duplication and rearrangements, evolutionary theory, clustering algorithms, and scale-free networks. This course is offered to undergraduates and addresses several algorithmic challenges in computational biology. The principles of algorithmic design for biological datasets are studied and existing algorithms analyzed for application to real datasets. Topics covered include: biological sequence analysis, gene identification, regulatory motif discovery, genome assembly, genome duplication and rearrangements, evolutionary theory, clustering algorithms, and scale-free networks.

Subjects

biological sequence analysis | biological sequence analysis | gene finding | gene finding | motif discovery | motif discovery | RNA folding | RNA folding | global and local sequence alignment | global and local sequence alignment | genome assembly | genome assembly | comparative genomics | comparative genomics | genome duplication | genome duplication | genome rearrangements | genome rearrangements | evolutionary theory | evolutionary theory | gene expression | gene expression | clustering algorithms | clustering algorithms | scale-free networks | scale-free networks | machine learning applications | machine learning applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Bioinformatics and Proteomics (MIT) 6.092 Bioinformatics and Proteomics (MIT)

Description

This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon. This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon.

Subjects

bioinformatics | bioinformatics | proteomics | proteomics | sequence analysis | sequence analysis | microarray expression analysis | microarray expression analysis | Bayesian methods | Bayesian methods | control theory | control theory | scale-free networks | scale-free networks | biotechnology applications | biotechnology applications | real-world examples | real-world examples | actual implementations | actual implementations | engineering design issues | engineering design issues | signal processing | signal processing | network theory | network theory | machine learning | machine learning | robotics | robotics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.895 Computational Biology: Genomes, Networks, Evolution (MIT)

Description

This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include:Genomes: Biological Sequence Analysis, Hidden Markov Models, Gene Finding, RNA Folding, Sequence Alignment, Genome Assembly.Networks: Gene Expression Analysis, Regulatory Motifs, Graph Algorithms, Scale-free Networks, Network Motifs, Network Evolution.Evolution: Comparative Genomics, Phylogenetics, Genome Duplication, Genome Rearrangements, Evolutionary Theory, Rapid Evolution.

Subjects

Genomes: Biological sequence analysis | hidden Markov models | gene finding | RNA folding | sequence alignment | genome assembly | Networks: Gene expression analysis | regulatory motifs | graph algorithms | scale-free networks | network motifs | network evolution | Evolution: Comparative genomics | phylogenetics | genome duplication | genome rearrangements | evolutionary theory | rapid evolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.096 Algorithms for Computational Biology (MIT)

Description

This course is offered to undergraduates and addresses several algorithmic challenges in computational biology. The principles of algorithmic design for biological datasets are studied and existing algorithms analyzed for application to real datasets. Topics covered include: biological sequence analysis, gene identification, regulatory motif discovery, genome assembly, genome duplication and rearrangements, evolutionary theory, clustering algorithms, and scale-free networks.

Subjects

biological sequence analysis | gene finding | motif discovery | RNA folding | global and local sequence alignment | genome assembly | comparative genomics | genome duplication | genome rearrangements | evolutionary theory | gene expression | clustering algorithms | scale-free networks | machine learning applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Bioinformatics and Proteomics (MIT)

Description

This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon.

Subjects

bioinformatics | proteomics | sequence analysis | microarray expression analysis | Bayesian methods | control theory | scale-free networks | biotechnology applications | real-world examples | actual implementations | engineering design issues | signal processing | network theory | machine learning | robotics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata