Searching for scanner : 11 results found | RSS Feed for this search

9.71 Functional MRI of High-Level Vision (MIT) 9.71 Functional MRI of High-Level Vision (MIT)

Description

We are now at an unprecedented point in the field of neuroscience: We can watch the human brain in action as it sees, thinks, decides, reads, and remembers. Functional magnetic resonance imaging (fMRI) is the only method that enables us to monitor local neural activity in the normal human brain in a noninvasive fashion and with good spatial resolution. A large number of far-reaching and fundamental questions about the human mind and brain can now be answered using straightforward applications of this technology. This is particularly true in the area of high-level vision, the study of how we interpret and use visual information including object recognition, mental imagery, visual attention, perceptual awareness, visually guided action, and visual memory. The goals of this course are to help We are now at an unprecedented point in the field of neuroscience: We can watch the human brain in action as it sees, thinks, decides, reads, and remembers. Functional magnetic resonance imaging (fMRI) is the only method that enables us to monitor local neural activity in the normal human brain in a noninvasive fashion and with good spatial resolution. A large number of far-reaching and fundamental questions about the human mind and brain can now be answered using straightforward applications of this technology. This is particularly true in the area of high-level vision, the study of how we interpret and use visual information including object recognition, mental imagery, visual attention, perceptual awareness, visually guided action, and visual memory. The goals of this course are to help

Subjects

functional magnetic resonance imaging (fMRI) | functional magnetic resonance imaging (fMRI) | neural activity | neural activity | human | human | brain | brain | noninvasive | noninvasive | resolution | resolution | high-level vision | high-level vision | object recognition | object recognition | visual attention | visual attention | perceptual awareness | perceptual awareness | visually guided action | visually guided action | visual memory | visual memory | voxelwise analysis | voxelwise analysis | conjugate mirroring | conjugate mirroring | interleaved stimulus presentation | interleaved stimulus presentation | magnetization following excitation | magnetization following excitation | active voxels | active voxels | scanner drift | scanner drift | trial sorting | trial sorting | collinear factors | collinear factors | different model factors | different model factors | mock scanner | mock scanner | scanner session | scanner session | visual stimulation task | visual stimulation task | hemoglobin signal | hemoglobin signal | labeling plane | labeling plane | nearby voxels | nearby voxels | shimming coils | shimming coils | bias field estimation | bias field estimation | conscious encoding | conscious encoding | spiral imaging | spiral imaging | functional resolution | functional resolution | hemodynamic activity | hemodynamic activity | direct cortical stimulation | direct cortical stimulation | physiological noise | physiological noise | refractory effects | refractory effects | independent statistical tests. | independent statistical tests.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.71 Functional MRI of High-Level Vision (MIT)

Description

We are now at an unprecedented point in the field of neuroscience: We can watch the human brain in action as it sees, thinks, decides, reads, and remembers. Functional magnetic resonance imaging (fMRI) is the only method that enables us to monitor local neural activity in the normal human brain in a noninvasive fashion and with good spatial resolution. A large number of far-reaching and fundamental questions about the human mind and brain can now be answered using straightforward applications of this technology. This is particularly true in the area of high-level vision, the study of how we interpret and use visual information including object recognition, mental imagery, visual attention, perceptual awareness, visually guided action, and visual memory. The goals of this course are to help

Subjects

functional magnetic resonance imaging (fMRI) | neural activity | human | brain | noninvasive | resolution | high-level vision | object recognition | visual attention | perceptual awareness | visually guided action | visual memory | voxelwise analysis | conjugate mirroring | interleaved stimulus presentation | magnetization following excitation | active voxels | scanner drift | trial sorting | collinear factors | different model factors | mock scanner | scanner session | visual stimulation task | hemoglobin signal | labeling plane | nearby voxels | shimming coils | bias field estimation | conscious encoding | spiral imaging | functional resolution | hemodynamic activity | direct cortical stimulation | physiological noise | refractory effects | independent statistical tests.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.035 Computer Language Engineering (MIT) 6.035 Computer Language Engineering (MIT)

Description

This course analyzes issues associated with the implementation of higher-level programming languages. Topics covered include: fundamental concepts, functions, and structures of compilers, the interaction of theory and practice, and using tools in building software. The course includes a multi-person project on compiler design and implementation. This course analyzes issues associated with the implementation of higher-level programming languages. Topics covered include: fundamental concepts, functions, and structures of compilers, the interaction of theory and practice, and using tools in building software. The course includes a multi-person project on compiler design and implementation.

Subjects

compilers | compilers | compiler design | compiler design | compiler implementation | compiler implementation | scanner | scanner | parser | parser | semantic checker | semantic checker | code generation | code generation | dataflow optimizations | dataflow optimizations | optimizer | optimizer

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3D Scanning and Modeling 3D Scanning and Modeling

Description

Se plantea una introducción a los sistemas de modelización tridimensional, permitiendo al alumno adquirir competencias en la adquisición de datos con equipos láser escaner 3D. Se aplica la metodología de estudio de casos. Se plantea una introducción a los sistemas de modelización tridimensional, permitiendo al alumno adquirir competencias en la adquisición de datos con equipos láser escaner 3D. Se aplica la metodología de estudio de casos.

Subjects

nubes de puntos | nubes de puntos | sistemas 3D escaner | sistemas 3D escaner | realidad Virtual | realidad Virtual | adquisición de datos | adquisición de datos | Modelling | Virtual Reality | Modelling | Virtual Reality | point clouds | point clouds | Data adquisition | Data adquisition | Modelización Tridimensional | Modelización Tridimensional | Ingeniería Cartográfica | Geodésica y Fotogrametría | Ingeniería Cartográfica | Geodésica y Fotogrametría | 3D scanner systems | 3D scanner systems

License

Copyright 2009, by the Contributing Authors http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.upm.es/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

RES.10-001 Making Science and Engineering Pictures (MIT) RES.10-001 Making Science and Engineering Pictures (MIT)

Description

Includes audio/video content: AV lectures. This collection of videos teaches how to use a flatbed scanner to create photographs of science and engineering. It is part of the interdisciplinary course taught at MIT called “Visual Strategies for Scientists and Engineers” that provides instruction in best practices for creating more effective graphics and photographs to support and communicate research in science and engineering.About the InstructorFelice Frankel is an award-winning science photographer and research scientist in the Center for Materials Science and Engineering at the Massachusetts Institute of Technology. Felice's images have been internationally published in books, journals, and magazines, including the New York Times, Nature, Science, National Geographic, and Di Includes audio/video content: AV lectures. This collection of videos teaches how to use a flatbed scanner to create photographs of science and engineering. It is part of the interdisciplinary course taught at MIT called “Visual Strategies for Scientists and Engineers” that provides instruction in best practices for creating more effective graphics and photographs to support and communicate research in science and engineering.About the InstructorFelice Frankel is an award-winning science photographer and research scientist in the Center for Materials Science and Engineering at the Massachusetts Institute of Technology. Felice's images have been internationally published in books, journals, and magazines, including the New York Times, Nature, Science, National Geographic, and Di

Subjects

scientific photography | scientific photography | journal submissions | journal submissions | PDMS photography | PDMS photography | microfluidic devices | microfluidic devices | microarrays | microarrays | drug delivery device | drug delivery device | petri dishes | petri dishes | E. Coli growth | E. Coli growth | flatbed scanner images | flatbed scanner images | human physiome chip | human physiome chip | lung on a chip | lung on a chip | electronic camera | electronic camera | microscale solar cells | microscale solar cells | solar cell | solar cell | E-Ink | E-Ink | tomato images | tomato images | music box | music box | Venus’ flower basket | Venus’ flower basket | Soft microfluidic sensor | Soft microfluidic sensor | paper-based microfluidics | paper-based microfluidics | diagnostic device | diagnostic device | macro photography | macro photography

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

First Composite Image of the Global Biosphere First Composite Image of the Global Biosphere

Description

Subjects

noaa | noaa | earthscience | earthscience | avhrr | avhrr | advancedveryhighresolutionradiometer | advancedveryhighresolutionradiometer | czcs | czcs | coastalzonecolorscanner | coastalzonecolorscanner | globalbiosphere | globalbiosphere

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

First Photo of U.S. by NASA Satellite

Description

Subjects

mss | erts | earthresourcestechnologysatellite | multispectralscannersystem

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Visioneer 4400 USB Flatbed Scanner

Description

Flatbed scanner in cream plastic housing. Will scan up to A4 size paper.. Maker: Visioneer. Date: 2000 (circa) - from the The Betty Smithers Design Collection at Staffordshire University.

Subjects

scanner | ukoer | design | W000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

D75X34 Information Technology: Applications Software 1

Description

This unit will aid you to utilise a range of software application packages to meet complex information requirements by teaching you the fundamentals of the software application, and also by pointing you towards resources that will aid your learning process. These resources are mainly internet based.

Subjects

D75X 34 | mouse | disk drive | printer | USB port | scanner | software application packages | SCQF Level 7

License

Licensed to colleges in Scotland only Licensed to colleges in Scotland only Except where expressly indicated otherwise on the face of these materials (i) copyright in these materials is owned by the Scottish Qualification Authority (SQA), and (ii) none of these materials may be Used without the express, prior, written consent of the Colleges Open Learning Exchange Group (COLEG) and SQA, except if and to the extent that such Use is permitted under COLEG's conditions of Contribution and Use of Learning Materials through COLEG’s Repository for the purposes of which these materials are COLEG Materials. Except where expressly indicated otherwise on the face of these materials (i) copyright in these materials is owned by the Scottish Qualification Authority (SQA), and (ii) none of these materials may be Used without the express, prior, written consent of the Colleges Open Learning Exchange Group (COLEG) and SQA, except if and to the extent that such Use is permitted under COLEG's conditions of Contribution and Use of Learning Materials through COLEG’s Repository for the purposes of which these materials are COLEG Materials. http://content.resourceshare.ac.uk/xmlui/bitstream/handle/10949/17761/LicenceSQAMaterialsCOLEG.pdf?sequence=1 http://content.resourceshare.ac.uk/xmlui/bitstream/handle/10949/17761/LicenceSQAMaterialsCOLEG.pdf?sequence=1 SQA

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.035 Computer Language Engineering (MIT)

Description

This course analyzes issues associated with the implementation of higher-level programming languages. Topics covered include: fundamental concepts, functions, and structures of compilers, the interaction of theory and practice, and using tools in building software. The course includes a multi-person project on compiler design and implementation.

Subjects

compilers | compiler design | compiler implementation | scanner | parser | semantic checker | code generation | dataflow optimizations | optimizer

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

RES.10-001 Making Science and Engineering Pictures (MIT)

Description

This collection of videos teaches how to use a flatbed scanner to create photographs of science and engineering. It is part of the interdisciplinary course taught at MIT called “Visual Strategies for Scientists and Engineers” that provides instruction in best practices for creating more effective graphics and photographs to support and communicate research in science and engineering.About the InstructorFelice Frankel is an award-winning science photographer and research scientist in the Center for Materials Science and Engineering at the Massachusetts Institute of Technology. Felice's images have been internationally published in books, journals, and magazines, including the New York Times, Nature, Science, National Geographic, and Discover. She is a fellow of the American Ass

Subjects

scientific photography | journal submissions | PDMS photography | microfluidic devices | microarrays | drug delivery device | petri dishes | E. Coli growth | flatbed scanner images | human physiome chip | lung on a chip | electronic camera | microscale solar cells | solar cell | E-Ink | tomato images | music box | ? flower basket | Soft microfluidic sensor | paper-based microfluidics | diagnostic device | macro photography

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata