Searching for scheme : 45 results found | RSS Feed for this search

1 2

úca's Hole

Description

Subjects

ireland | river | thirties | 1930s | construction | dam | cranes | 20thcentury | wicklow | leinster | hydroelectricity | nationallibraryofireland | poulaphouca | pollaphuca | jamespodea | odeaphotographiccollection | vision:outdoor=097 | vision:sky=0532 | pollaphúca | poulaphoucascheme | griffithmoynihankettlescheme | liffeyscheme | griffinkettlemoynihanscheme

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT) 6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment. 6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | network | computer security | computer security | security | security | cryptography | cryptography | secret-key | secret-key | public-key | public-key | digital signature | digital signature | authentication | authentication | identification | identification | intrusion detection | intrusion detection | virus | virus | operating system | operating system | software | software | protection | protection | electronic mail | electronic mail | email | email | electronic commerce | electronic commerce | electronic cash | electronic cash | firewall | firewall | computer | computer | digital | digital | signature | signature | electronic | electronic | cash | cash | commerce | commerce | mail | mail | operating | operating | system | system | intrustion | intrustion | detection | detection | distributed | distributed | physical | physical | discretionary | discretionary | mandatory | mandatory | access | access | control | control | biometrics | biometrics | information | information | flow | flow | models | models | covert | covert | channels | channels | integrity | integrity | logic | logic | voting | voting | risk | risk | assessment | assessment | secure | secure | web | web | browsers | browsers | architecture | architecture | engineering | engineering | certificates | certificates | multi-user computer systems | multi-user computer systems | distributed computer systems | distributed computer systems | physical security | physical security | discretionary access control | discretionary access control | mandatory access control | mandatory access control | information-flow models | information-flow models | covert channels | covert channels | integrity models | integrity models | elementary cryptography | elementary cryptography | authentication logic;electronic cash | authentication logic;electronic cash | viruses | viruses | firewalls | firewalls | electronic voting | electronic voting | risk assessment | risk assessment | secure web browsers | secure web browsers | network security | network security | architecture engineering | architecture engineering | digital signatures | digital signatures | authentication schemes | authentication schemes | identification schemes | identification schemes | formal models | formal models | secure operating systems | secure operating systems | software protection | software protection | electronic mail security | electronic mail security | World Wide Web | World Wide Web | ecommerce | ecommerce | email security | email security | www | www | payment protocols | payment protocols | authentication logic | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.410 Principles of Autonomy and Decision Making (MIT) 16.410 Principles of Autonomy and Decision Making (MIT)

Description

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information

Subjects

autonomy | autonomy | decision | decision | decision-making | decision-making | reasoning | reasoning | optimization | optimization | autonomous | autonomous | autonomous systems | autonomous systems | decision support | decision support | algorithms | algorithms | artificial intelligence | artificial intelligence | a.i. | a.i. | operations | operations | operations research | operations research | logic | logic | deduction | deduction | heuristic search | heuristic search | constraint-based search | constraint-based search | model-based reasoning | model-based reasoning | planning | planning | execution | execution | uncertainty | uncertainty | machine learning | machine learning | linear programming | linear programming | dynamic programming | dynamic programming | integer programming | integer programming | network optimization | network optimization | decision analysis | decision analysis | decision theoretic planning | decision theoretic planning | Markov decision process | Markov decision process | scheme | scheme | propositional logic | propositional logic | constraints | constraints | Markov processes | Markov processes | computational performance | computational performance | satisfaction | satisfaction | learning algorithms | learning algorithms | system state | system state | state | state | search treees | search treees | plan spaces | plan spaces | model theory | model theory | decision trees | decision trees | function approximators | function approximators | optimization algorithms | optimization algorithms | limitations | limitations | tradeoffs | tradeoffs | search and reasoning | search and reasoning | game tree search | game tree search | local stochastic search | local stochastic search | stochastic | stochastic | genetic algorithms | genetic algorithms | constraint satisfaction | constraint satisfaction | propositional inference | propositional inference | rule-based systems | rule-based systems | rule-based | rule-based | model-based diagnosis | model-based diagnosis | neural nets | neural nets | reinforcement learning | reinforcement learning | web-based | web-based | search trees | search trees

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.42J Fundamentals of Energy in Buildings (MIT) 4.42J Fundamentals of Energy in Buildings (MIT)

Description

4.42J (or 2.66J or 1.044J), Fundamentals of Energy in Buildings, is an undergraduate class offered in the Department of Architecture, and jointly in the Department of Civil and Environmental Engineering and the Department of Mechanical Engineering. It provides a first course in thermo-sciences for students primarily interested in architecture and building technology. Throughout the course, the fundamentals important to energy, ventilation, air conditioning and comfort in buildings are introduced.  Two design projects play a major part in this class. They will require creative use of the principles and information given in the course to solve a particular problem, relating to energy consumption in buildings. The students will be asked to propose and assess innovativ 4.42J (or 2.66J or 1.044J), Fundamentals of Energy in Buildings, is an undergraduate class offered in the Department of Architecture, and jointly in the Department of Civil and Environmental Engineering and the Department of Mechanical Engineering. It provides a first course in thermo-sciences for students primarily interested in architecture and building technology. Throughout the course, the fundamentals important to energy, ventilation, air conditioning and comfort in buildings are introduced.  Two design projects play a major part in this class. They will require creative use of the principles and information given in the course to solve a particular problem, relating to energy consumption in buildings. The students will be asked to propose and assess innovativ

Subjects

energy in buildings | energy in buildings | thermo-sciences | thermo-sciences | energy | energy | ventilation | ventilation | air conditioning and comfort in buildings | air conditioning and comfort in buildings | thermodynamics | thermodynamics | electricity | electricity | architecture | architecture | building technology | building technology | civil engineering | civil engineering | buildings | buildings | conservation of energy | conservation of energy | air-water vapor mixtures | air-water vapor mixtures | thermal comfort | thermal comfort | heat pumps | heat pumps | refrigeration cycles | refrigeration cycles | thermodynamic performance | thermodynamic performance | heat transfer | heat transfer | creative design projects | creative design projects | air conditioning | air conditioning | energy consumption | energy consumption | building designs | building designs | building technologies | building technologies | operating schemes | operating schemes | properties of gases | properties of gases | properties of liquids | properties of liquids | power producing systems | power producing systems | energy losses | energy losses | building envelope | building envelope | 4.42 | 4.42 | 1.044 | 1.044 | 2.66 | 2.66

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.336 Numerical Methods of Applied Mathematics II (MIT) 18.336 Numerical Methods of Applied Mathematics II (MIT)

Description

This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods. This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods.

Subjects

Linear systems | Linear systems | Fast Fourier Transform | Fast Fourier Transform | Wave equation | Wave equation | Von Neumann analysis | Von Neumann analysis | Conditions for stability | Conditions for stability | Dissipation | Dissipation | Multistep schemes | Multistep schemes | Dispersion | Dispersion | Group Velocity | Group Velocity | Propagation of Wave Packets | Propagation of Wave Packets | Parabolic Equations | Parabolic Equations | The Du Fort Frankel Scheme | The Du Fort Frankel Scheme | Convection-Diffusion equation | Convection-Diffusion equation | ADI Methods | ADI Methods | Elliptic Equations | Elliptic Equations | Jacobi | Gauss-Seidel and SOR(w) | Jacobi | Gauss-Seidel and SOR(w) | ODEs | ODEs | finite differences | finite differences | spectral methods | spectral methods | well-posedness and stability | well-posedness and stability | boundary and nonlinear instabilities | boundary and nonlinear instabilities | Finite Difference Schemes | Finite Difference Schemes | Partial Differential Equations | Partial Differential Equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction To Plasma Physics I (MIT) 22.611J Introduction To Plasma Physics I (MIT)

Description

Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Basic plasma properties and collective behavior. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propagation in a magnetic field.Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities. A subject description tailored to fit the background and interests of the attending students distributed shortly before and at the beginning of the subject. Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Basic plasma properties and collective behavior. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propagation in a magnetic field.Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities. A subject description tailored to fit the background and interests of the attending students distributed shortly before and at the beginning of the subject.

Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | thermonuclear fusion | thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | plasma confinement schemes | | plasma confinement schemes | | MHD models | MHD models | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities | 22.611 | 22.611 | 6.651 | 6.651 | 8.613 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.336 Numerical Methods of Applied Mathematics II (MIT) 18.336 Numerical Methods of Applied Mathematics II (MIT)

Description

This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods.Technical RequirementsMATLAB® software is required to run the .m files found on this course site.

Subjects

Linear systems | Linear systems | Fast Fourier Transform | Fast Fourier Transform | Wave equation | Wave equation | Von Neumann analysis | Von Neumann analysis | Conditions for stability | Conditions for stability | Dissipation | Dissipation | Multistep schemes | Multistep schemes | Dispersion | Dispersion | Group Velocity | Group Velocity | Propagation of Wave Packets | Propagation of Wave Packets | Parabolic Equations | Parabolic Equations | The Du Fort Frankel Scheme | The Du Fort Frankel Scheme | Convection-Diffusion equation | Convection-Diffusion equation | ADI Methods | ADI Methods | Elliptic Equations | Elliptic Equations | Jacobi | Gauss-Seidel and SOR(w) | Jacobi | Gauss-Seidel and SOR(w) | ODEs | ODEs | finite differences | finite differences | spectral methods | spectral methods | well-posedness and stability | well-posedness and stability | boundary and nonlinear instabilities | boundary and nonlinear instabilities | Finite Difference Schemes | Finite Difference Schemes | Partial Differential Equations | Partial Differential Equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.410 Principles of Autonomy and Decision Making (MIT) 16.410 Principles of Autonomy and Decision Making (MIT)

Description

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information

Subjects

autonomy | autonomy | decision | decision | decision-making | decision-making | reasoning | reasoning | optimization | optimization | autonomous | autonomous | autonomous systems | autonomous systems | decision support | decision support | algorithms | algorithms | artificial intelligence | artificial intelligence | a.i. | a.i. | operations | operations | operations research | operations research | logic | logic | deduction | deduction | heuristic search | heuristic search | constraint-based search | constraint-based search | model-based reasoning | model-based reasoning | planning | planning | execution | execution | uncertainty | uncertainty | machine learning | machine learning | linear programming | linear programming | dynamic programming | dynamic programming | integer programming | integer programming | network optimization | network optimization | decision analysis | decision analysis | decision theoretic planning | decision theoretic planning | Markov decision process | Markov decision process | scheme | scheme | propositional logic | propositional logic | constraints | constraints | Markov processes | Markov processes | computational performance | computational performance | satisfaction | satisfaction | learning algorithms | learning algorithms | system state | system state | state | state | search treees | search treees | plan spaces | plan spaces | model theory | model theory | decision trees | decision trees | function approximators | function approximators | optimization algorithms | optimization algorithms | limitations | limitations | tradeoffs | tradeoffs | search and reasoning | search and reasoning | game tree search | game tree search | local stochastic search | local stochastic search | stochastic | stochastic | genetic algorithms | genetic algorithms | constraint satisfaction | constraint satisfaction | propositional inference | propositional inference | rule-based systems | rule-based systems | rule-based | rule-based | model-based diagnosis | model-based diagnosis | neural nets | neural nets | reinforcement learning | reinforcement learning | web-based | web-based | search trees | search trees

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.80 Small-Molecule Spectroscopy and Dynamics (MIT) 5.80 Small-Molecule Spectroscopy and Dynamics (MIT)

Description

The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy. The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy.

Subjects

spectroscopy | spectroscopy | harmonic oscillators | harmonic oscillators | matrix | matrix | hamiltonian | hamiltonian | heisenberg | heisenberg | vibrating rotor | vibrating rotor | Born-Oppenheimer | Born-Oppenheimer | diatomics | diatomics | laser schemes | laser schemes | angular momentum | angular momentum | hund's cases | hund's cases | energy levels | energy levels | second-order effects | second-order effects | perturbations | perturbations | Wigner-Eckart | Wigner-Eckart | Rydberg-Klein-Rees | Rydberg-Klein-Rees | rigid rotor | rigid rotor | asymmetric rotor | asymmetric rotor | vibronic coupling | vibronic coupling | wavepackets | wavepackets

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | computer security | security | cryptography | secret-key | public-key | digital signature | authentication | identification | intrusion detection | virus | operating system | software | protection | electronic mail | email | electronic commerce | electronic cash | firewall | computer | digital | signature | electronic | cash | commerce | mail | operating | system | intrustion | detection | distributed | physical | discretionary | mandatory | access | control | biometrics | information | flow | models | covert | channels | integrity | logic | voting | risk | assessment | secure | web | browsers | architecture | engineering | certificates | multi-user computer systems | distributed computer systems | physical security | discretionary access control | mandatory access control | information-flow models | covert channels | integrity models | elementary cryptography | authentication logic;electronic cash | viruses | firewalls | electronic voting | risk assessment | secure web browsers | network security | architecture engineering | digital signatures | authentication schemes | identification schemes | formal models | secure operating systems | software protection | electronic mail security | World Wide Web | ecommerce | email security | www | payment protocols | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.492-1 Integrated Chemical Engineering Topics I: Process Control by Design (MIT) 10.492-1 Integrated Chemical Engineering Topics I: Process Control by Design (MIT)

Description

In the ICE-Topics courses, various chemical engineering problems are presented and analyzed in an industrial context. Emphasis is on the integration of fundamentals with material property estimation, process control, product development, and computer simulation. Integration of societal issues, such as engineering ethics, environmental and safety considerations, and impact of technology on society are addressed in the context of case studies.The broad context for this ICE-Topics module is the commonsense notion that, when designing something, one should plan for the off-normal conditions that may occur. A continuous process is conceived and designed as a steady-state operation. However, the process must start up, shut down, and operate in the event of disturbances, and so the time-varying b In the ICE-Topics courses, various chemical engineering problems are presented and analyzed in an industrial context. Emphasis is on the integration of fundamentals with material property estimation, process control, product development, and computer simulation. Integration of societal issues, such as engineering ethics, environmental and safety considerations, and impact of technology on society are addressed in the context of case studies.The broad context for this ICE-Topics module is the commonsense notion that, when designing something, one should plan for the off-normal conditions that may occur. A continuous process is conceived and designed as a steady-state operation. However, the process must start up, shut down, and operate in the event of disturbances, and so the time-varying b

Subjects

process control | process control | heat exchanger network | heat exchanger network | design | design | shower process | shower process | continuous chemical processes | continuous chemical processes | dynamic simulation | dynamic simulation | implementation | implementation | controllers | controllers | feedback structure | feedback structure | material model | material model | energy balance model | energy balance model | linearizing equations | linearizing equations | Relative Gain Array | Relative Gain Array | Disturbance Cost | Disturbance Cost | proportional control algorithm | proportional control algorithm | steady-state model | steady-state model | numerical linearization | numerical linearization | matrix operations | matrix operations | variable pairing | variable pairing | process simulators | process simulators | design process | design process | offset phenomenon | offset phenomenon | RGA | RGA | DC | DC | heat recovery scheme | heat recovery scheme

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.735 Double Affine Hecke Algebras in Representation Theory, Combinatorics, Geometry, and Mathematical Physics (MIT) 18.735 Double Affine Hecke Algebras in Representation Theory, Combinatorics, Geometry, and Mathematical Physics (MIT)

Description

Double affine Hecke algebras (DAHA), also called Cherednik algebras, and their representations appear in many contexts: integrable systems (Calogero-Moser and Ruijsenaars models), algebraic geometry (Hilbert schemes), orthogonal polynomials, Lie theory, quantum groups, etc. In this course we will review the basic theory of DAHA and their representations, emphasizing their connections with other subjects and open problems. Double affine Hecke algebras (DAHA), also called Cherednik algebras, and their representations appear in many contexts: integrable systems (Calogero-Moser and Ruijsenaars models), algebraic geometry (Hilbert schemes), orthogonal polynomials, Lie theory, quantum groups, etc. In this course we will review the basic theory of DAHA and their representations, emphasizing their connections with other subjects and open problems.

Subjects

dunkl operators | dunkl operators | cherednik | cherednik | affine algebra | affine algebra | representation theory | representation theory | hecke | hecke | knizknik-zamoldchikov | knizknik-zamoldchikov | orbifolds | orbifolds | calogero-moser space | calogero-moser space | hilbert scheme | hilbert scheme | algebra | algebra | macdonald-mehta integral | macdonald-mehta integral | integrable system | integrable system

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.726 Algebraic Geometry (MIT) 18.726 Algebraic Geometry (MIT)

Description

This course provides an introduction to the language of schemes, properties of morphisms, and sheaf cohomology. Together with 18.725 Algebraic Geometry, students gain an understanding of the basic notions and techniques of modern algebraic geometry. This course provides an introduction to the language of schemes, properties of morphisms, and sheaf cohomology. Together with 18.725 Algebraic Geometry, students gain an understanding of the basic notions and techniques of modern algebraic geometry.

Subjects

category theory | category theory | sheaves | sheaves | abelian sheaves | abelian sheaves | shcemes | shcemes | morphisms | morphisms | projective morphisms | projective morphisms | differentials | differentials | divisors | divisors | homological algebra | homological algebra | algebraic geometry | algebraic geometry | cohomology | cohomology | quasicoherent sheaves | quasicoherent sheaves | projective spaces | projective spaces | hilbert polynomials | hilbert polynomials | gaga | gaga | serre duality | serre duality | cohen-macaulay schemes | cohen-macaulay schemes | riemann-roch | riemann-roch | etale cohomology | etale cohomology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT) 22.611J Introduction to Plasma Physics I (MIT)

Description

The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented. The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented.

Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | controlled thermonuclear fusion | controlled thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | charged particles | charged particles | magnetic fields | magnetic fields | plasma confinement schemes | plasma confinement schemes | MHD models | MHD models | simple equilibrium | simple equilibrium | stability analysis | stability analysis | Two-fluid hydrodynamic plasma models | Two-fluid hydrodynamic plasma models | wave propagation | wave propagation | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.012 Seminar: Fusion and Plasma Physics (MIT) 22.012 Seminar: Fusion and Plasma Physics (MIT)

Description

This course uses lectures and discussion to introduce the range of topics relevant to plasma physics and fusion engineering. An introductory discussion of the economic and ecological motivation for the development of fusion power is also presented. Contemporary magnetic confinement schemes, theoretical questions, and engineering considerations are presented by expert guest lecturers. Students enrolled in the course also tour the Plasma Science and Fusion Center experimental facilities. This course uses lectures and discussion to introduce the range of topics relevant to plasma physics and fusion engineering. An introductory discussion of the economic and ecological motivation for the development of fusion power is also presented. Contemporary magnetic confinement schemes, theoretical questions, and engineering considerations are presented by expert guest lecturers. Students enrolled in the course also tour the Plasma Science and Fusion Center experimental facilities.

Subjects

plasma physics | plasma physics | fusion engineering | fusion engineering | fusion power | fusion power | contemporary magnetic confinement schemes | contemporary magnetic confinement schemes | Plasma Science and Fusion Center | Plasma Science and Fusion Center | ITER | ITER

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT) 22.611J Introduction to Plasma Physics I (MIT)

Description

In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne

Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | controlled thermonuclear fusion | controlled thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | charged particles | charged particles | magnetic fields | magnetic fields | plasma confinement schemes | plasma confinement schemes | MHD models | MHD models | simple equilibrium | simple equilibrium | stability analysis | stability analysis | Two-fluid hydrodynamic plasma models | Two-fluid hydrodynamic plasma models | wave propagation | wave propagation | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities | fourth state of matter | fourth state of matter | plasma state | plasma state | visible universe | visible universe | economics | economics | plasmas | plasmas | motion of charged particles | motion of charged particles | two-fluid hydrodynamic plasma models | two-fluid hydrodynamic plasma models | Debye Shielding | Debye Shielding | collective effects | collective effects | charged particle motion | charged particle motion | EM Fields | EM Fields | cross-sections | cross-sections | relaxation | relaxation | fluid plasma descriptions | fluid plasma descriptions | MHD equilibrium | MHD equilibrium | MHD dynamics | MHD dynamics | dynamics in two-fluid plasmas | dynamics in two-fluid plasmas | cold plasma waves | cold plasma waves | magnetic field | magnetic field | microscopic to fluid plasma descriptions | microscopic to fluid plasma descriptions | Vlasov-Maxwell kinetic theory.linear Landau growth | Vlasov-Maxwell kinetic theory.linear Landau growth | kinetic description of waves | kinetic description of waves | instabilities | instabilities | Vlasov-Maxwell kinetic theory | Vlasov-Maxwell kinetic theory | linear Landau growth | linear Landau growth | 22.611 | 22.611 | 6.651 | 6.651 | 8.613 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | computer security | security | cryptography | secret-key | public-key | digital signature | authentication | identification | intrusion detection | virus | operating system | software | protection | electronic mail | email | electronic commerce | electronic cash | firewall | computer | digital | signature | electronic | cash | commerce | mail | operating | system | intrustion | detection | distributed | physical | discretionary | mandatory | access | control | biometrics | information | flow | models | covert | channels | integrity | logic | voting | risk | assessment | secure | web | browsers | architecture | engineering | certificates | multi-user computer systems | distributed computer systems | physical security | discretionary access control | mandatory access control | information-flow models | covert channels | integrity models | elementary cryptography | authentication logic;electronic cash | viruses | firewalls | electronic voting | risk assessment | secure web browsers | network security | architecture engineering | digital signatures | authentication schemes | identification schemes | formal models | secure operating systems | software protection | electronic mail security | World Wide Web | ecommerce | email security | www | payment protocols | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | computer security | security | cryptography | secret-key | public-key | digital signature | authentication | identification | intrusion detection | virus | operating system | software | protection | electronic mail | email | electronic commerce | electronic cash | firewall | computer | digital | signature | electronic | cash | commerce | mail | operating | system | intrustion | detection | distributed | physical | discretionary | mandatory | access | control | biometrics | information | flow | models | covert | channels | integrity | logic | voting | risk | assessment | secure | web | browsers | architecture | engineering | certificates | multi-user computer systems | distributed computer systems | physical security | discretionary access control | mandatory access control | information-flow models | covert channels | integrity models | elementary cryptography | authentication logic;electronic cash | viruses | firewalls | electronic voting | risk assessment | secure web browsers | network security | architecture engineering | digital signatures | authentication schemes | identification schemes | formal models | secure operating systems | software protection | electronic mail security | World Wide Web | ecommerce | email security | www | payment protocols | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Dredging in progress at Folly End, Sunderland Dredging in progress at Folly End, Sunderland

Description

Subjects

portofsunderland | portofsunderland | sunderland | sunderland | riverwear | riverwear | historic | historic | follyend | follyend | dredger | dredger | dredging | dredging | boats | boats | vessels | vessels | wearmouthbridge | wearmouthbridge | bridges | bridges | rivers | rivers | wearside | wearside | quays | quays | ferry | ferry | wfvint | wfvint | monkwearmouth | monkwearmouth | blackandwhitephotograph | blackandwhitephotograph | digitalimage | digitalimage | abstract | abstract | archives | archives | industry | industry | industrialheritage | industrialheritage | maritimeheritage | maritimeheritage | shipbuildingheritage | shipbuildingheritage | northeastofengland | northeastofengland | unitedkingdom | unitedkingdom | interesting | interesting | unusual | unusual | fascinating | fascinating | impressive | impressive | progression | progression | progress | progress | june1950 | june1950 | follyendremovalscheme | follyendremovalscheme | navigation | navigation | river | river | ferryboat | ferryboat | portauthority | portauthority | 1717 | 1717 | actofparliament | actofparliament | riverwearcommissioners | riverwearcommissioners | management | management | transportation | transportation | structure | structure | construction | construction | harbour | harbour | port | port | piers | piers | docks | docks | coaltrade | coaltrade | alliedindustries | alliedindustries | marineengineering | marineengineering | shiprepairing | shiprepairing | deck | deck | rail | rail | chimney | chimney | smoke | smoke | sky | sky | water | water | land | land | bank | bank | cabin | cabin | bridge | bridge | crane | crane | buildings | buildings | wall | wall | roof | roof | window | window | frame | frame | glass | glass | mast | mast | soil | soil | pile | pile | cog | cog

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Merilo-tloris-načrt Ground plan-scale-scheme

Description

Razvijanje prostorskih predstav pri učencih je zahtevna naloga. Proces razvijanja tovrstnih predstav se prične že v začetku drugega triletja in nadaljuje v nadaljnjem izobraževanju. Učenci še nimajo dobrih predstav in si abstraktne stvari težko predstavljajo, zato jim moramo pomagati. Eden od načinov konkretizacije so slike. Developing 3D orientation in space - presentation of different view on 3D object (ground plan, bird\'s-eye view, ...) and using scale to create a scheme.

Subjects

družba | society | merilo | scale | velikost | size | načrt | scheme | tloris | ground plan | ptičja perspektiva | bird\'s-eye view

License

http://creativecommons.org/licenses/by-nc-sa/2.5/si/ http://creativecommons.org/licenses/by-nc-sa/2.5/si/

Site sourced from

http://atlas.fri.uni-lj.si/oai/index.php?verb=ListRecords&metadataPrefix=oai_dc&set=uciteljska

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT)

Description

In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne

Subjects

plasma phenomena | energy generation | controlled thermonuclear fusion | astrophysics | Coulomb collisions | transport processes | charged particles | magnetic fields | plasma confinement schemes | MHD models | simple equilibrium | stability analysis | Two-fluid hydrodynamic plasma models | wave propagation | kinetic theory | Vlasov plasma model | electron plasma waves | Landau damping | ion-acoustic waves | streaming instabilities | fourth state of matter | plasma state | visible universe | economics | plasmas | motion of charged particles | two-fluid hydrodynamic plasma models | Debye Shielding | collective effects | charged particle motion | EM Fields | cross-sections | relaxation | fluid plasma descriptions | MHD equilibrium | MHD dynamics | dynamics in two-fluid plasmas | cold plasma waves | magnetic field | microscopic to fluid plasma descriptions | Vlasov-Maxwell kinetic theory.linear Landau growth | kinetic description of waves | instabilities | Vlasov-Maxwell kinetic theory | linear Landau growth | 22.611 | 6.651 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.492-1 Integrated Chemical Engineering Topics I: Process Control by Design (MIT)

Description

In the ICE-Topics courses, various chemical engineering problems are presented and analyzed in an industrial context. Emphasis is on the integration of fundamentals with material property estimation, process control, product development, and computer simulation. Integration of societal issues, such as engineering ethics, environmental and safety considerations, and impact of technology on society are addressed in the context of case studies.The broad context for this ICE-Topics module is the commonsense notion that, when designing something, one should plan for the off-normal conditions that may occur. A continuous process is conceived and designed as a steady-state operation. However, the process must start up, shut down, and operate in the event of disturbances, and so the time-varying b

Subjects

process control | heat exchanger network | design | shower process | continuous chemical processes | dynamic simulation | implementation | controllers | feedback structure | material model | energy balance model | linearizing equations | Relative Gain Array | Disturbance Cost | proportional control algorithm | steady-state model | numerical linearization | matrix operations | variable pairing | process simulators | design process | offset phenomenon | RGA | DC | heat recovery scheme

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT)

Description

In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne

Subjects

plasma phenomena | energy generation | controlled thermonuclear fusion | astrophysics | Coulomb collisions | transport processes | charged particles | magnetic fields | plasma confinement schemes | MHD models | simple equilibrium | stability analysis | Two-fluid hydrodynamic plasma models | wave propagation | kinetic theory | Vlasov plasma model | electron plasma waves | Landau damping | ion-acoustic waves | streaming instabilities | fourth state of matter | plasma state | visible universe | economics | plasmas | motion of charged particles | two-fluid hydrodynamic plasma models | Debye Shielding | collective effects | charged particle motion | EM Fields | cross-sections | relaxation | fluid plasma descriptions | MHD equilibrium | MHD dynamics | dynamics in two-fluid plasmas | cold plasma waves | magnetic field | microscopic to fluid plasma descriptions | Vlasov-Maxwell kinetic theory.linear Landau growth | kinetic description of waves | instabilities | Vlasov-Maxwell kinetic theory | linear Landau growth | 22.611 | 6.651 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

What Graduates Can Offer: Selling Yourself To Employers - Learning Package

Description

A learning activity which addresses what skills graduates can offer to potential employers as well as the importance of matching skills and strengths to employer's job descriptions.

Subjects

employability | graduate employability | skills | employers | ukoer | graduates | job descriptions | jobs | graduate schemes | administrative studies | N000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

What Graduates Can Offer: Selling Yourself To Employers - Raw Materials

Description

The Raw Materials for a learning activity which addresses what skills graduates can offer to potential employers as well as the importance of matching skills and strengths to employer’s job descriptions.

Subjects

employability | jobs | graduate schemes | graduates | applying for jobs | skills | ukoer | administrative studies | N000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata