Searching for scope : 417 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ryan Aeronautical Image

Description

Subjects

aviation | aircraft | airplane | aerialdrone | drone | unmannedaircraft | unmannedairvehicle | uav | reconnaissanceaircraft | reconnaissance | teledyne | ryan | teledyneryan | teledyneryanyqm98compasscope | ryanyqm98compasscope | yqm98 | compasscope | yqm98compasscope | yqm98acompasscoper | yqm98a | compasscoper | ryanyqm98compasscoper | ryanyqm98acompasscoper | yqm98compasscoper | coper | ryanyqm98rtern | yqm98rtern | ryanyqm98artern | yqm98artern | rtern | garrettairesearch | garrett | garrettatf3 | atf3 | garrettf104 | f104 | garrettyf104ga100 | yf104ga100 | f104ga100

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.309 Biological Engineering II: Instrumentation and Measurement (MIT) 20.309 Biological Engineering II: Instrumentation and Measurement (MIT)

Description

Includes audio/video content: AV special element video. This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors. Includes audio/video content: AV special element video. This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors.

Subjects

DNA analysis | DNA analysis | Fourier analysis | Fourier analysis | FFT | FFT | DNA melting | DNA melting | electronics | electronics | microscopy | microscopy | microscope | microscope | probes | probes | biology | biology | atomic force microscope | atomic force microscope | AFM | AFM | scanning probe microscope | scanning probe microscope | image processing | image processing | MATLAB | MATLAB | convolution | convolution | optoelectronics | optoelectronics | rheology | rheology | fluorescence | fluorescence | noise | noise | detector | detector | optics | optics | diffraction | diffraction | optical trap | optical trap | 3D | 3D | 3-D | 3-D | three-dimensional imaging | three-dimensional imaging | visualization | visualization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.728 Applied Quantum and Statistical Physics (MIT) 6.728 Applied Quantum and Statistical Physics (MIT)

Description

6.728 covers concepts in elementary quantum mechanics and statistical physics. The course introduces applied quantum physics and  emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others. 6.728 covers concepts in elementary quantum mechanics and statistical physics. The course introduces applied quantum physics and  emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Subjects

applied quantum physics | applied quantum physics | quantum physics | quantum physics | statistical physics | statistical physics | quantum mechanics | quantum mechanics | Schrodinger | Schrodinger | tunneling | tunneling | harmonic oscillator | harmonic oscillator | hydrogen atom | hydrogen atom | variational methods | variational methods | Fermi-Dirac | Fermi-Dirac | Bose-Einstein | Bose-Einstein | Boltzmann | Boltzmann | distribution function | distribution function | electron microscope | electron microscope | scanning tunneling microscope | scanning tunneling microscope | thermonic emitter | thermonic emitter | atomic force microscope | atomic force microscope

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.728 Applied Quantum and Statistical Physics (MIT) 6.728 Applied Quantum and Statistical Physics (MIT)

Description

6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others. 6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Subjects

applied quantum physics | applied quantum physics | quantum physics | quantum physics | statistical physics | statistical physics | quantum mechanics | quantum mechanics | Schrodinger | Schrodinger | tunneling | tunneling | harmonic oscillator | harmonic oscillator | hydrogen atom | hydrogen atom | variational methods | variational methods | Fermi-Dirac | Fermi-Dirac | Bose-Einstein | Bose-Einstein | Boltzmann | Boltzmann | distribution function | distribution function | electron microscope | electron microscope | scanning tunneling microscope | scanning tunneling microscope | thermonic emitter | thermonic emitter | atomic force microscope | atomic force microscope

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Utraviolet Light Source in an Old Galaxy Utraviolet Light Source in an Old Galaxy

Description

Subjects

andromeda | andromeda | hst | hst | hubblespacetelescope | hubblespacetelescope | stis | stis | spacetelescopeimagingspectrograph | spacetelescopeimagingspectrograph | m32constellation | m32constellation

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Queen's College, Observatory, Cork Queen's College, Observatory, Cork

Description

Subjects

ireland | ireland | clock | clock | observatory | observatory | telescope | telescope | dome | dome | ucc | ucc | cocork | cocork | munster | munster | 1880 | 1880 | queenscollege | queenscollege | universitycollegecork | universitycollegecork | robertfrench | robertfrench | williamlawrence | williamlawrence | nationallibraryofireland | nationallibraryofireland | lawrencecollection | lawrencecollection | crawfordobservatory | crawfordobservatory | howardgrubb | howardgrubb | limerickbybeachcomber | limerickbybeachcomber | lawrencephotographicstudio | lawrencephotographicstudio | thelawrencephotographcollection | thelawrencephotographcollection | siderostatictelescope | siderostatictelescope | sirhowardgrubb | sirhowardgrubb | williamhoratiocrawford | williamhoratiocrawford

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.309 Biological Engineering II: Instrumentation and Measurement (MIT)

Description

This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors.

Subjects

DNA analysis | Fourier analysis | FFT | DNA melting | electronics | microscopy | microscope | probes | biology | atomic force microscope | AFM | scanning probe microscope | image processing | MATLAB | convolution | optoelectronics | rheology | fluorescence | noise | detector | optics | diffraction | optical trap | 3D | 3-D | three-dimensional imaging | visualization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.728 Applied Quantum and Statistical Physics (MIT)

Description

6.728 covers concepts in elementary quantum mechanics and statistical physics. The course introduces applied quantum physics and  emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Subjects

applied quantum physics | quantum physics | statistical physics | quantum mechanics | Schrodinger | tunneling | harmonic oscillator | hydrogen atom | variational methods | Fermi-Dirac | Bose-Einstein | Boltzmann | distribution function | electron microscope | scanning tunneling microscope | thermonic emitter | atomic force microscope

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.728 Applied Quantum and Statistical Physics (MIT)

Description

6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Subjects

applied quantum physics | quantum physics | statistical physics | quantum mechanics | Schrodinger | tunneling | harmonic oscillator | hydrogen atom | variational methods | Fermi-Dirac | Bose-Einstein | Boltzmann | distribution function | electron microscope | scanning tunneling microscope | thermonic emitter | atomic force microscope

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.728 Applied Quantum and Statistical Physics (MIT)

Description

6.728 is offered under the department's "Devices, Circuits, and Systems" concentration. The course covers concepts in elementary quantum mechanics and statistical physics, introduces applied quantum physics, and emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Subjects

applied quantum physics | quantum physics | statistical physics | quantum mechanics | Schrodinger | tunneling | harmonic oscillator | hydrogen atom | variational methods | Fermi-Dirac | Bose-Einstein | Boltzmann | distribution function | electron microscope | scanning tunneling microscope | thermonic emitter | atomic force microscope

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.032 Dynamics (MIT) 2.032 Dynamics (MIT)

Description

This course reviews momentum and energy principles, and then covers the following topics: Hamilton's principle and Lagrange's equations; three-dimensional kinematics and dynamics of rigid bodies; steady motions and small deviations therefrom, gyroscopic effects, and causes of instability; free and forced vibrations of lumped-parameter and continuous systems; nonlinear oscillations and the phase plane; nonholonomic systems; and an introduction to wave propagation in continuous systems. This course was originally developed by Professor T. Akylas. This course reviews momentum and energy principles, and then covers the following topics: Hamilton's principle and Lagrange's equations; three-dimensional kinematics and dynamics of rigid bodies; steady motions and small deviations therefrom, gyroscopic effects, and causes of instability; free and forced vibrations of lumped-parameter and continuous systems; nonlinear oscillations and the phase plane; nonholonomic systems; and an introduction to wave propagation in continuous systems. This course was originally developed by Professor T. Akylas.

Subjects

motion | motion | momentum | momentum | work-energy principle | work-energy principle | degrees of freedom | degrees of freedom | Lagrange's equations | Lagrange's equations | D'Alembert's principle | D'Alembert's principle | Hamilton's principle | Hamilton's principle | gyroscope | gyroscope | gyroscopic effect | gyroscopic effect | steady motions | steady motions | nature of small deviations | nature of small deviations | natural modes | natural modes | natural frequencies for continuous and lumped parameter systems | natural frequencies for continuous and lumped parameter systems | mode shapes | mode shapes | forced vibrations | forced vibrations | dynamic stability theory | dynamic stability theory | instability | instability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Nurse Grace Poland at the microscope, Hope Vale mission Nurse Grace Poland at the microscope, Hope Vale mission

Description

Subjects

statelibraryofqueenslandqueensland1916 | statelibraryofqueenslandqueensland1916 | queensland | queensland | science | science | worldsciencefestival | worldsciencefestival | hopevale | hopevale | gracepoland | gracepoland | microscope | microscope

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=32605636@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.76 Multi-Scale System Design (MIT) 2.76 Multi-Scale System Design (MIT)

Description

Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials

Subjects

scale | scale | complexity | complexity | nano | micro | meso | or macro-scale | nano | micro | meso | or macro-scale | kinematics | kinematics | metrology | metrology | engineering modeling | motion | engineering modeling | motion | modeling | modeling | design | design | manufacture | manufacture | design principles | design principles | fabrication process | fabrication process | functional requirements | functional requirements | precision instruments | precision instruments | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | piezoelectric | transducer | actuator | sensor | piezoelectric | transducer | actuator | sensor | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constaint-based design | constaint-based design | carbon nanotube | carbon nanotube | nanowire | nanowire | scanning tunneling microscope | scanning tunneling microscope | flexure | flexure | protein structure | protein structure | polymer structure | polymer structure | nanopelleting | nanopipette | nanowire | nanopelleting | nanopipette | nanowire | TMA pixel array | TMA pixel array | error modeling | error modeling | repeatability | repeatability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Hubble First Servicing EVA Hubble First Servicing EVA

Description

Subjects

eva | eva | rms | rms | hst | hst | spacewalk | spacewalk | endeavour | endeavour | hubblespacetelescope | hubblespacetelescope | storymusgrave | storymusgrave | canadaarm | canadaarm | sts61 | sts61 | servicingmission | servicingmission | extravehicularactivity | extravehicularactivity | jeffreyhoffman | jeffreyhoffman | remotemanipulatorsystem | remotemanipulatorsystem

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS-103 STS-103

Description

Subjects

1999 | 1999 | missionpatch | missionpatch | hst | hst | scottkelly | scottkelly | hubblespacetelescope | hubblespacetelescope | stevensmith | stevensmith | december27 | december27 | december19 | december19 | curtisbrown | curtisbrown | claudenicollier | claudenicollier | michaelfoale | michaelfoale | sts103 | sts103 | jeanfrancoisclervoy | jeanfrancoisclervoy | johngrunsfield | johngrunsfield

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Techniques for Studying Materials: Optical Microscopy

Description

This set of animations consists of interactive diagrams of reflection and transmission microscopes. From TLP: Optical Microscopy

Subjects

metallography | microscopy | specimentransmission microscope | reflection microscope | polarised light | DoITPoMS | University of Cambridge | animation | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_animations.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Doctor on Nauru, ca. 1942 Doctor on Nauru, ca. 1942

Description

Subjects

statelibraryofqueenslandqueensland1916 | statelibraryofqueenslandqueensland1916 | queensland | queensland | science | science | worldsciencefestival | worldsciencefestival | microscope | microscope | doctor | doctor | nauru | nauru

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=32605636@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Ultra Deep Field Ultra Deep Field

Description

Subjects

hubblespacetelescope | hubblespacetelescope | galaxy | galaxy | ultradeepfield | ultradeepfield | deepspace | deepspace

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

C. J. Pound pictured with his microscope C. J. Pound pictured with his microscope

Description

Subjects

statelibraryofqueenslandqueensland1916 | statelibraryofqueenslandqueensland1916 | queensland | queensland | science | science | worldsciencefestival | worldsciencefestival | microscope | microscope | cjpound | cjpound

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=32605636@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.409 Hands-On Astronomy: Observing Stars and Planets (MIT) 12.409 Hands-On Astronomy: Observing Stars and Planets (MIT)

Description

This class introduces the student to the use of small telescopes, either for formal research or as a hobby. This course covers background for and techniques of visual observation, electronic imaging, and spectroscopy of the Moon, planets, satellites, stars, and brighter deep-space objects. Weekly outdoor observing sessions using 8-inch diameter telescopes when weather permits. Indoor sessions introduce needed skills. Introduction to contemporary observational astronomy including astronomical computing, image and data processing, and how astronomers work. Student must maintain a careful and complete written log which is graded. (Limited enrollment with priority to freshmen. Consumes an entire evening each week; 100% attendance at observing sessions required to pass.) This class introduces the student to the use of small telescopes, either for formal research or as a hobby. This course covers background for and techniques of visual observation, electronic imaging, and spectroscopy of the Moon, planets, satellites, stars, and brighter deep-space objects. Weekly outdoor observing sessions using 8-inch diameter telescopes when weather permits. Indoor sessions introduce needed skills. Introduction to contemporary observational astronomy including astronomical computing, image and data processing, and how astronomers work. Student must maintain a careful and complete written log which is graded. (Limited enrollment with priority to freshmen. Consumes an entire evening each week; 100% attendance at observing sessions required to pass.)

Subjects

moon | moon | telescopes | telescopes | stars | stars | planets | planets | spectroscopy | spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A Cosmic Magnifying Glass A Cosmic Magnifying Glass

Description

Subjects

spiral | spiral | galaxies | galaxies | draco | draco | elliptical | elliptical | hst | hst | abell | abell | hubblespacetelescope | hubblespacetelescope | gravitationallensing | gravitationallensing

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Hubble Reopens Eye on the Universe Hubble Reopens Eye on the Universe

Description

Subjects

hst | hst | eskimonebula | eskimonebula | hubblespacetelescope | hubblespacetelescope | redgiant | redgiant | wfpc | wfpc | widefieldplanetarycamera2 | widefieldplanetarycamera2

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.101 Introductory Analog Electronics Laboratory (MIT) 6.101 Introductory Analog Electronics Laboratory (MIT)

Description

6.101 is an introductory experimental laboratory that explores the design, construction, and debugging of analog electronic circuits. Lectures and six laboratory projects investigate the performance characteristics of diodes, transistors, JFETs, and op-amps, including the construction of a small audio amplifier and preamplifier. Seven weeks are devoted to the design and implementation, and written and oral presentation of a project in an environment similar to that of engineering design teams in industry. The course provides opportunity to simulate real-world problems and solutions that involve trade offs and the use of engineering judgment. Engineers from local analog engineering companies come to campus to help students with their design projects. 6.101 is an introductory experimental laboratory that explores the design, construction, and debugging of analog electronic circuits. Lectures and six laboratory projects investigate the performance characteristics of diodes, transistors, JFETs, and op-amps, including the construction of a small audio amplifier and preamplifier. Seven weeks are devoted to the design and implementation, and written and oral presentation of a project in an environment similar to that of engineering design teams in industry. The course provides opportunity to simulate real-world problems and solutions that involve trade offs and the use of engineering judgment. Engineers from local analog engineering companies come to campus to help students with their design projects.

Subjects

analog electronic circuits | analog electronic circuits | diode characteristics | diode characteristics | transistors | transistors | JFETs | JFETs | op-amps | op-amps | audio amplifier | audio amplifier | preamplifier | preamplifier | audio and radio frequency circuits | audio and radio frequency circuits | electronic test equipment | electronic test equipment | digital multimeter | digital multimeter | oscilloscope | oscilloscope | function generator | function generator | curve tracer | curve tracer

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Giant Twisters in the Lagoon Nebula

Description

Subjects

sagittarius | galaxy | hst | hubblespacetelescope | lagoonnebula | stis | wfpc | widefieldplanetarycamera2 | spacetelescopeimagingspectrograph | nicmos | oherschel36 | nearinfraredcameraandmultiobjectspectrometer

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Graf Zeppelin over Egypt Graf Zeppelin over Egypt

Description

Subjects

grafzeppelin | grafzeppelin | circumnavigation | circumnavigation | stereoscope | stereoscope

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata