Searching for seawater : 25 results found | RSS Feed for this search

1

12.808 Introduction to Observational Physical Oceanography (MIT) 12.808 Introduction to Observational Physical Oceanography (MIT)

Description

Observational physical oceanography includes topics such as the  physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions. Observational physical oceanography includes topics such as the  physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions.

Subjects

Physical description of the sea | Physical description of the sea | physical properties of seawater | physical properties of seawater | methods | methods | measurements | measurements | wind-driven ocean circulation | wind-driven ocean circulation | abyssal ocean circulation | abyssal ocean circulation | boundary processes | boundary processes | wave motions | wave motions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Atmosphere, Ocean and Climate Dynamics (MIT) 12.003 Atmosphere, Ocean and Climate Dynamics (MIT)

Description

Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall. Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.742 Marine Chemistry (MIT) 12.742 Marine Chemistry (MIT)

Description

Includes audio/video content: AV selected lectures. This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers. Includes audio/video content: AV selected lectures. This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers.

Subjects

chemical oceanography | chemical oceanography | biogeochemical cycling | biogeochemical cycling | water column processes | water column processes | ocean particles | ocean particles | seawater composition | seawater composition | ocean particle transport | ocean particle transport | carbon | carbon | oxygen | oxygen | nitrogen | nitrogen | phosphorus | phosphorus | sulfur | sulfur | carbon dioxide | carbon dioxide | sediment chemistry | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.479J Water and Sanitation Infrastructure in Developing Countries (MIT) 11.479J Water and Sanitation Infrastructure in Developing Countries (MIT)

Description

This course deals with the principles of infrastructure planning in developing countries, with a focus on appropriate and sustainable technologies for water and sanitation. It also incorporates technical, socio-cultural, public health, and economic factors into the planning and design of water and sanitation systems. Upon completion, students will be able to plan simple, yet reliable, water supply and sanitation systems for developing countries that are compatible with local customs and available human and material resources. Graduate and upper division students from any department who are interested in international development at the grassroots level are encouraged to participate in this interdisciplinary subject. Acknowledgment This course was jointly developed by Earthea Nance and Sus This course deals with the principles of infrastructure planning in developing countries, with a focus on appropriate and sustainable technologies for water and sanitation. It also incorporates technical, socio-cultural, public health, and economic factors into the planning and design of water and sanitation systems. Upon completion, students will be able to plan simple, yet reliable, water supply and sanitation systems for developing countries that are compatible with local customs and available human and material resources. Graduate and upper division students from any department who are interested in international development at the grassroots level are encouraged to participate in this interdisciplinary subject. Acknowledgment This course was jointly developed by Earthea Nance and Sus

Subjects

chemical oceanography | chemical oceanography | biogeochemical cycling | biogeochemical cycling | water column processes | water column processes | ocean particles | ocean particles | seawater composition | seawater composition | ocean particle transport | ocean particle transport | carbon | carbon | oxygen | oxygen | nitrogen | nitrogen | phosphorus | phosphorus | sulfur | sulfur | carbon dioxide | carbon dioxide | sediment chemistry | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.76 Aquatic Chemistry (MIT) 1.76 Aquatic Chemistry (MIT)

Description

This course details the quantitative treatment of chemical processes in aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. It includes a brief review of chemical thermodynamics that is followed by discussion of acid-base, precipitation-dissolution, coordination, and reduction-oxidation reactions. Emphasis is on equilibrium calculations as a tool for understanding the variables that govern the chemical composition of aquatic systems and the fate of inorganic pollutants. This course is offered through The MIT/WHOI Joint Program. The MIT/WHOI Joint Program is one of the premier marine science graduate programs in the world. It draws on the complementary strengths and approaches of two great institutions: the Massachusetts Institute of Technology (MIT) an This course details the quantitative treatment of chemical processes in aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. It includes a brief review of chemical thermodynamics that is followed by discussion of acid-base, precipitation-dissolution, coordination, and reduction-oxidation reactions. Emphasis is on equilibrium calculations as a tool for understanding the variables that govern the chemical composition of aquatic systems and the fate of inorganic pollutants. This course is offered through The MIT/WHOI Joint Program. The MIT/WHOI Joint Program is one of the premier marine science graduate programs in the world. It draws on the complementary strengths and approaches of two great institutions: the Massachusetts Institute of Technology (MIT) an

Subjects

water | water | aquatic | aquatic | seawater | seawater | carbonate | carbonate | trace metals | trace metals | woods hole | woods hole | acid-base | acid-base | complexation | complexation | precipitation-dissolution | precipitation-dissolution | reduction-oxidation | reduction-oxidation | chemical kinetics | chemical kinetics | equilibrium composition | equilibrium composition | approximation techniques | approximation techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files. This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | geochemical | and mineralogical changes | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | geochemical | and mineralogical changes | geochemical | and mineralogical changes | 5. Micropaleontological | isotopic | geochemical | and mineralogical changes | 5. Micropaleontological | isotopic | geochemical | and mineralogical changes | Micropaleontological | isotopic | geochemical | and mineralogical changes | Micropaleontological | isotopic | geochemical | and mineralogical changes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Physics of Atmospheres and Oceans (MIT) 12.003 Physics of Atmospheres and Oceans (MIT)

Description

The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data. The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology). This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | and mineralogical changes | geochemical | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | climate change | climate change | marine records | marine records | ice core records | ice core records | continental records | continental records | paleoceanographic data | paleoceanographic data | statistics | statistics | factor analysis | factor analysis | time series analysis | time series analysis | simple climatology | simple climatology | geochemical changes | geochemical changes | mineralogical changes | mineralogical changes | glacial cycles | glacial cycles | intergalacial cycles | intergalacial cycles | earth-surface environment | earth-surface environment | environmental history | environmental history | Oxygen Isotope | Oxygen Isotope | Coral Reefs | Coral Reefs | Paleoceanography | Paleoceanography | Paleoclimatology | Paleoclimatology | Paleothermometry | Paleothermometry | Atmospheric Carbon Dioxide | Atmospheric Carbon Dioxide | Ocean Chemistry | Ocean Chemistry | Salinity | Salinity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.500 Desalination and Water Purification (MIT) 2.500 Desalination and Water Purification (MIT)

Description

Water supply is a problem of worldwide concern: more than 1 billion people do not have reliable access to clean drinking water. Water is a particular problem for the developing world, but scarcity also impacts industrial societies. Water purification and desalination technology can be used to convert brackish ground water or seawater into drinking water. The challenge is to do so sustainably, with minimum cost and energy consumption, and with appropriately accessible technologies. This subject will survey the state-of-the-art in water purification by desalination and filtration. Fundamental thermodynamic and transport processes which govern the creation of fresh water from seawater and brackish ground water will be developed. The technologies of existing desalination systems will be discus Water supply is a problem of worldwide concern: more than 1 billion people do not have reliable access to clean drinking water. Water is a particular problem for the developing world, but scarcity also impacts industrial societies. Water purification and desalination technology can be used to convert brackish ground water or seawater into drinking water. The challenge is to do so sustainably, with minimum cost and energy consumption, and with appropriately accessible technologies. This subject will survey the state-of-the-art in water purification by desalination and filtration. Fundamental thermodynamic and transport processes which govern the creation of fresh water from seawater and brackish ground water will be developed. The technologies of existing desalination systems will be discus

Subjects

reverse osmosis | reverse osmosis | seawater | seawater | electrodialysis | electrodialysis | student work | student work | distillation | distillation | flash evaporation | flash evaporation | power generation | power generation | wastewater treatment | wastewater treatment | particulate removal | particulate removal | system engineering | system engineering | cogeneration | cogeneration | solar still | solar still | chlorination | chlorination | Haiti | Haiti

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology). This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | and mineralogical changes | geochemical | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | climate change | climate change | marine records | marine records | ice core records | ice core records | continental records | continental records | paleoceanographic data | paleoceanographic data | statistics | statistics | factor analysis | factor analysis | time series analysis | time series analysis | simple climatology | simple climatology | geochemical changes | geochemical changes | mineralogical changes | mineralogical changes | glacial cycles | glacial cycles | intergalacial cycles | intergalacial cycles | earth-surface environment | earth-surface environment | environmental history | environmental history | Oxygen Isotope | Oxygen Isotope | Coral Reefs | Coral Reefs | Paleoceanography | Paleoceanography | Paleoclimatology | Paleoclimatology | Paleothermometry | Paleothermometry | Atmospheric Carbon Dioxide | Atmospheric Carbon Dioxide | Ocean Chemistry | Ocean Chemistry | Salinity | Salinity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology). This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | and mineralogical changes | geochemical | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | climate change | climate change | marine records | marine records | ice core records | ice core records | continental records | continental records | paleoceanographic data | paleoceanographic data | statistics | statistics | factor analysis | factor analysis | time series analysis | time series analysis | simple climatology | simple climatology | geochemical changes | geochemical changes | mineralogical changes | mineralogical changes | glacial cycles | glacial cycles | intergalacial cycles | intergalacial cycles | earth-surface environment | earth-surface environment | environmental history | environmental history

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.808 Introduction to Observational Physical Oceanography (MIT)

Description

Observational physical oceanography includes topics such as the  physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions.

Subjects

Physical description of the sea | physical properties of seawater | methods | measurements | wind-driven ocean circulation | abyssal ocean circulation | boundary processes | wave motions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.500 Desalination and Water Purification (MIT)

Description

Water supply is a problem of worldwide concern: more than 1 billion people do not have reliable access to clean drinking water. Water is a particular problem for the developing world, but scarcity also impacts industrial societies. Water purification and desalination technology can be used to convert brackish ground water or seawater into drinking water. The challenge is to do so sustainably, with minimum cost and energy consumption, and with appropriately accessible technologies. This subject will survey the state-of-the-art in water purification by desalination and filtration. Fundamental thermodynamic and transport processes which govern the creation of fresh water from seawater and brackish ground water will be developed. The technologies of existing desalination systems will be discus

Subjects

reverse osmosis | seawater | electrodialysis | student work | distillation | flash evaporation | power generation | wastewater treatment | particulate removal | system engineering | cogeneration | solar still | chlorination | Haiti

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.

Subjects

history of the earth-surface environment | deep-sea sediments | ice cores | corals | Micropaleontological | isotopic | geochemical | and mineralogical changes | seawater composition | atmospheric chemistry | climate | ocean temperature | circulation | chemistry | glacial/interglacial cycles | orbital forcing | geochemical | and mineralogical changes | 5. Micropaleontological | isotopic | geochemical | and mineralogical changes | Micropaleontological | isotopic | geochemical | and mineralogical changes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Physics of Atmospheres and Oceans (MIT)

Description

The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data.

Subjects

1. Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | greenhouse effect | greenhouse gases | Atmospheric layers | pressure and density | Convection | adiabatic lapse rate | Humidity | Convective clouds | Temperature | Pressure and geopotential height | Winds | Fluids in motion | Hydrostatic balance | Incompressible flow | compressible flow | radial inflow | Geostrophic motion | Taylor-Proudman Theorem | Ekman layer | Coriolis force | Rossby number | Hadley circulation | ocean | seawater | salinity | geostrophic and hydrostatic balance | inhomogeneity | Abyssal circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | deep-sea sediments | ice cores | corals | Micropaleontological | isotopic | geochemical | and mineralogical changes | seawater composition | atmospheric chemistry | climate | ocean temperature | circulation | chemistry | glacial/interglacial cycles | orbital forcing | climate change | marine records | ice core records | continental records | paleoceanographic data | statistics | factor analysis | time series analysis | simple climatology | geochemical changes | mineralogical changes | glacial cycles | intergalacial cycles | earth-surface environment | environmental history | Oxygen Isotope | Coral Reefs | Paleoceanography | Paleoclimatology | Paleothermometry | Atmospheric Carbon Dioxide | Ocean Chemistry | Salinity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ECorr: Potential Measurement

Description

An important corrosion property often measured in the lab and field is the potential of an electrode. This case study gives an overview of how and why this is done as well as giving insight into how to interpret the measurements. This is an introductory level case study.

Subjects

corrosion | engineering | metals | steel | seawater | oxygen diffusion | surface | corrosion control | corrosion rate | cathodic protection | organic coating | evans diagrams | corrosion reactions | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | deep-sea sediments | ice cores | corals | Micropaleontological | isotopic | geochemical | and mineralogical changes | seawater composition | atmospheric chemistry | climate | ocean temperature | circulation | chemistry | glacial/interglacial cycles | orbital forcing | climate change | marine records | ice core records | continental records | paleoceanographic data | statistics | factor analysis | time series analysis | simple climatology | geochemical changes | mineralogical changes | glacial cycles | intergalacial cycles | earth-surface environment | environmental history

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | deep-sea sediments | ice cores | corals | Micropaleontological | isotopic | geochemical | and mineralogical changes | seawater composition | atmospheric chemistry | climate | ocean temperature | circulation | chemistry | glacial/interglacial cycles | orbital forcing | climate change | marine records | ice core records | continental records | paleoceanographic data | statistics | factor analysis | time series analysis | simple climatology | geochemical changes | mineralogical changes | glacial cycles | intergalacial cycles | earth-surface environment | environmental history | Oxygen Isotope | Coral Reefs | Paleoceanography | Paleoclimatology | Paleothermometry | Atmospheric Carbon Dioxide | Ocean Chemistry | Salinity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | deep-sea sediments | ice cores | corals | Micropaleontological | isotopic | geochemical | and mineralogical changes | seawater composition | atmospheric chemistry | climate | ocean temperature | circulation | chemistry | glacial/interglacial cycles | orbital forcing | climate change | marine records | ice core records | continental records | paleoceanographic data | statistics | factor analysis | time series analysis | simple climatology | geochemical changes | mineralogical changes | glacial cycles | intergalacial cycles | earth-surface environment | environmental history | Oxygen Isotope | Coral Reefs | Paleoceanography | Paleoclimatology | Paleothermometry | Atmospheric Carbon Dioxide | Ocean Chemistry | Salinity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Atmosphere, Ocean and Climate Dynamics (MIT)

Description

This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.

Subjects

1. Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | greenhouse effect | greenhouse gases | Atmospheric layers | pressure and density | Convection | adiabatic lapse rate | Humidity | Convective clouds | Temperature | Pressure and geopotential height | Winds | Fluids in motion | Hydrostatic balance | Incompressible flow | compressible flow | radial inflow | Geostrophic motion | Taylor-Proudman Theorem | Ekman layer | Coriolis force | Rossby number | Hadley circulation | ocean | seawater | salinity | geostrophic and hydrostatic balance | inhomogeneity | Abyssal circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.742 Marine Chemistry (MIT)

Description

This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers.

Subjects

chemical oceanography | biogeochemical cycling | water column processes | ocean particles | seawater composition | ocean particle transport | carbon | oxygen | nitrogen | phosphorus | sulfur | carbon dioxide | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.479J Water and Sanitation Infrastructure in Developing Countries (MIT)

Description

This course deals with the principles of infrastructure planning in developing countries, with a focus on appropriate and sustainable technologies for water and sanitation. It also incorporates technical, socio-cultural, public health, and economic factors into the planning and design of water and sanitation systems. Upon completion, students will be able to plan simple, yet reliable, water supply and sanitation systems for developing countries that are compatible with local customs and available human and material resources. Graduate and upper division students from any department who are interested in international development at the grassroots level are encouraged to participate in this interdisciplinary subject. Acknowledgment This course was jointly developed by Earthea Nance and Sus

Subjects

chemical oceanography | biogeochemical cycling | water column processes | ocean particles | seawater composition | ocean particle transport | carbon | oxygen | nitrogen | phosphorus | sulfur | carbon dioxide | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.76 Aquatic Chemistry (MIT)

Description

This course details the quantitative treatment of chemical processes in aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. It includes a brief review of chemical thermodynamics that is followed by discussion of acid-base, precipitation-dissolution, coordination, and reduction-oxidation reactions. Emphasis is on equilibrium calculations as a tool for understanding the variables that govern the chemical composition of aquatic systems and the fate of inorganic pollutants. This course is offered through The MIT/WHOI Joint Program. The MIT/WHOI Joint Program is one of the premier marine science graduate programs in the world. It draws on the complementary strengths and approaches of two great institutions: the Massachusetts Institute of Technology (MIT) an

Subjects

water | aquatic | seawater | carbonate | trace metals | woods hole | acid-base | complexation | precipitation-dissolution | reduction-oxidation | chemical kinetics | equilibrium composition | approximation techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.808 Introduction to Observational Physical Oceanography (MIT)

Description

Observational physical oceanography includes topics such as the  physical description of the sea, the physical properties of seawater, methods and measurements, wind-driven ocean circulation, abyssal ocean circulation, boundary processes, and wave motions.

Subjects

Physical description of the sea | physical properties of seawater | methods | measurements | wind-driven ocean circulation | abyssal ocean circulation | boundary processes | wave motions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata