Searching for signal : 472 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

6.661 Receivers, Antennas, and Signals (MIT) 6.661 Receivers, Antennas, and Signals (MIT)

Description

This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation. This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation.Subjects

receiver | receiver | antenna | antenna | signal | signal | radio | radio | optical | optical | detection | detection | communications | communications | astronomy | astronomy | remote sensing | instrumentation | remote sensing | instrumentation | radar | radar | statistics | statistics | signal processing | signal processing | radiometer | radiometer | spectrometer | spectrometer | interferometer | interferometer | digital correlation | digital correlation | matched filter | matched filter | ambiguity function | ambiguity function | channel performance | channel performance | electromagnetic | electromagnetic | angular filtering | angular filtering | aperture synthesis | aperture synthesis | radiative transfer | radiative transfer | parameter estimation | parameter estimation | remote sensing | remote sensing | instrumentation | instrumentation | radio signals | radio signals | optical signals | optical signals | statistical analysis | statistical analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.003 Signals and Systems (MIT) 6.003 Signals and Systems (MIT)

Description

6.003 covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing. 6.003 covers the fundamentals of signal and system analysis, focusing on representations of discrete-time and continuous-time signals (singularity functions, complex exponentials and geometrics, Fourier representations, Laplace and Z transforms, sampling) and representations of linear, time-invariant systems (difference and differential equations, block diagrams, system functions, poles and zeros, convolution, impulse and step responses, frequency responses). Applications are drawn broadly from engineering and physics, including feedback and control, communications, and signal processing.Subjects

signal and system analysis | signal and system analysis | representations of discrete-time and continuous-time signals | representations of discrete-time and continuous-time signals | representations of linear time-invariant systems | representations of linear time-invariant systems | Fourier representations | Fourier representations | Laplace and Z transforms | Laplace and Z transforms | sampling | sampling | difference and differential equations | difference and differential equations | feedback and control | feedback and control | communications | communications | signal processing | signal processingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataRES.6-007 Signals and Systems (MIT) RES.6-007 Signals and Systems (MIT)

Description

Includes audio/video content: AV lectures. This course was developed in 1987 by the MIT Center for Advanced Engineering Studies. It was designed as a distance-education course for engineers and scientists in the workplace. Signals and Systems is an introduction to analog and digital signal processing, a topic that forms an integral part of engineering systems in many diverse areas, including seismic data processing, communications, speech processing, image processing, defense electronics, consumer electronics, and consumer products. The course presents and integrates the basic concepts for both continuous-time and discrete-time signals and systems. Signal and system representations are developed for both time and frequency domains. These representations are related through the Fourier tran Includes audio/video content: AV lectures. This course was developed in 1987 by the MIT Center for Advanced Engineering Studies. It was designed as a distance-education course for engineers and scientists in the workplace. Signals and Systems is an introduction to analog and digital signal processing, a topic that forms an integral part of engineering systems in many diverse areas, including seismic data processing, communications, speech processing, image processing, defense electronics, consumer electronics, and consumer products. The course presents and integrates the basic concepts for both continuous-time and discrete-time signals and systems. Signal and system representations are developed for both time and frequency domains. These representations are related through the Fourier tranSubjects

signal processing | signal processing | digital signals | digital signals | digital systems | digital systems | analog signal processing | analog signal processing | analog systems | analog systems | fourier transform | fourier transform | discrete-time equations | discrete-time equations | continuous-time equations | continuous-time equations | sampling | samplingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This team taught, multidisciplinary course covers the fundamentals of magnetic resonance imaging relevant to the conduct and interpretation of human brain mapping studies. The challenges inherent in advancing our knowledge about brain function using fMRI are presented first to put the work in context. The course then provides in depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include fMRI experimental design including block design, event related and exploratory data analysis methods, building and applying statistical mod This team taught, multidisciplinary course covers the fundamentals of magnetic resonance imaging relevant to the conduct and interpretation of human brain mapping studies. The challenges inherent in advancing our knowledge about brain function using fMRI are presented first to put the work in context. The course then provides in depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include fMRI experimental design including block design, event related and exploratory data analysis methods, building and applying statistical modSubjects

medical lab | medical lab | medical technology | medical technology | magnetic resonance imaging | magnetic resonance imaging | fMRI | fMRI | signal processing | signal processing | human brain mapping | human brain mapping | function | function | image formation physics | image formation physics | metabolism | metabolism | psychology | psychology | image signals | image signals | parenchymal | parenchymal | cerebrovascular neuroanatomy | cerebrovascular neuroanatomy | functional data analysis | functional data analysis | experimental design | experimental design | statistical models | statistical models | human subjects | human subjects | informed consent | informed consent | institutional review board requirements | institutional review board requirements | safety | safety | medical | medical | brain scan | brain scanLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawingsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course examines signals, systems and inference as unifying themes in communication, control and signal processing. Topics include input-output and state-space models of linear systems driven by deterministic and random signals; time- and transform-domain representations in discrete and continuous time; group delay; state feedback and observers; probabilistic models; stochastic processes, correlation functions, power spectra, spectral factorization; least-mean square error estimation; Wiener filtering; hypothesis testing; detection; matched filters. This course examines signals, systems and inference as unifying themes in communication, control and signal processing. Topics include input-output and state-space models of linear systems driven by deterministic and random signals; time- and transform-domain representations in discrete and continuous time; group delay; state feedback and observers; probabilistic models; stochastic processes, correlation functions, power spectra, spectral factorization; least-mean square error estimation; Wiener filtering; hypothesis testing; detection; matched filters.Subjects

signals and systems | signals and systems | transform representation | transform representation | state-space models | state-space models | state observers | state observers | state feedback | state feedback | probabilistic models | probabilistic models | random processes | random processes | power spectral density | power spectral density | hypothesis testing | hypothesis testing | signal detection | signal detectionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.661 Receivers, Antennas, and Signals (MIT)

Description

This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation.Subjects

receiver | antenna | signal | radio | optical | detection | communications | astronomy | remote sensing | instrumentation | radar | statistics | signal processing | radiometer | spectrometer | interferometer | digital correlation | matched filter | ambiguity function | channel performance | electromagnetic | angular filtering | aperture synthesis | radiative transfer | parameter estimation | remote sensing | instrumentation | radio signals | optical signals | statistical analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls filesSubjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataAviators, Mineola (LOC) Aviators, Mineola (LOC)

Description

Subjects

airplane | airplane | aircraft | aircraft | aviation | aviation | longisland | longisland | libraryofcongress | libraryofcongress | biplane | biplane | militaryaviation | militaryaviation | curtissjenny | curtissjenny | rooseveltfield | rooseveltfield | mineola | mineola | jn4 | jn4 | curtissjn4jenny | curtissjn4jenny | mineolalongisland | mineolalongisland | mineolany | mineolany | curtissjn4 | curtissjn4 | jn4jenny | jn4jenny | mineolanewyork | mineolanewyork | hazelhurstfield | hazelhurstfield | mineolali | mineolali | signalcorpsaviationstationmineola | signalcorpsaviationstationmineola | signalcorpsaviationstation | signalcorpsaviationstationLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Subjects

bridge | bridge | dublin | dublin | tracks | tracks | cables | cables | points | points | castiron | castiron | ornate | ornate | signal | signal | chevron | chevron | railwaybridge | railwaybridge | electricwires | electricwires | railwaysignal | railwaysignal | royalcanal | royalcanal | unknownlocation | unknownlocation | 1845 | 1845 | nationallibraryofireland | nationallibraryofireland | gnri | gnri | latticetruss | latticetruss | greatnorthernrailwayireland | greatnorthernrailwayireland | amiensstreetstation | amiensstreetstation | locationidentified | locationidentified | sirjohnmacneill | sirjohnmacneill | ossoryroad | ossoryroad | joshuahhargravecollection | joshuahhargravecollection | dublinanddroghedarailway | dublinanddroghedarailway | joshuehhargrave | joshuehhargrave | amiensstreetnorth | amiensstreetnorth | northernrailwayofireland | northernrailwayofirelandLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.341 Discrete-Time Signal Processing (MIT) 6.341 Discrete-Time Signal Processing (MIT)

Description

This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semest This class addresses the representation, analysis, and design of discrete time signals and systems. The major concepts covered include: Discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flowgraph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multirate techniques; Hilbert transforms; Cepstral analysis and various applications. Acknowledgements I would like to express my thanks to Thomas Baran, Myung Jin Choi, and Xiaomeng Shi for compiling the lecture notes on this site from my individual lectures and handouts and their class notes during the semestSubjects

discrete time signals and systems | discrete time signals and systems | discrete-time processing of continuous-time signals | discrete-time processing of continuous-time signals | decimation | decimation | interpolation | interpolation | sampling rate conversion | sampling rate conversion | Flowgraph structures | Flowgraph structures | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | time- and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters | linear prediction | linear prediction | Discrete Fourier transform | Discrete Fourier transform | FFT algorithm | FFT algorithm | Short-time Fourier analysis and filter banks | Short-time Fourier analysis and filter banks | Multirate techniques | Multirate techniques | Hilbert transforms | Hilbert transforms | Cepstral analysis | Cepstral analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemica This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. ChemicaSubjects

systems | systems | networks | networks | biochemistry | biochemistry | biology | biology | chemistry | chemistry | chemotaxis | chemotaxis | lactation | lactation | interferon | interferon | response | response | DNA | DNA | replication | replication | translation | translation | transcription | transcription | RNA | RNA | IFN | IFN | signals | signals | signaling | signaling | cellular | cellular | receptor | receptorLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This team taught, multidisciplinary course covers the fundamentals of magnetic resonance imaging relevant to the conduct and interpretation of human brain mapping studies. The challenges inherent in advancing our knowledge about brain function using fMRI are presented first to put the work in context. The course then provides in depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include fMRI experimental design including block design, event related and exploratory data analysis methods, building and applying statistical mod This team taught, multidisciplinary course covers the fundamentals of magnetic resonance imaging relevant to the conduct and interpretation of human brain mapping studies. The challenges inherent in advancing our knowledge about brain function using fMRI are presented first to put the work in context. The course then provides in depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include fMRI experimental design including block design, event related and exploratory data analysis methods, building and applying statistical modSubjects

medical imaging | medical imaging | medical lab | medical lab | medical technology | medical technology | magnetic resonance imaging | magnetic resonance imaging | fMRI | fMRI | signal processing | signal processing | human brain mapping | human brain mapping | function | function | image formation physics | image formation physics | metabolism | metabolism | psychology | psychology | image signals | image signals | parenchymal | parenchymal | cerebrovascular neuroanatomy | cerebrovascular neuroanatomy | functional data analysis | functional data analysis | experimental design | experimental design | statistical models | statistical models | human subjects | human subjects | informed consent | informed consent | institutional review board requirements | institutional review board requirements | safety | safety | medical | medical | brain scan | brain scanLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues andSubjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagrams | constant coefficients | constant coefficients | complex numbers | complex numbers | exponentials | exponentials | eigenvalues | eigenvalues | eigenvectors | eigenvectorsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This team-taught multidisciplinary course provides information relevant to the conduct and interpretation of human brain mapping studies. It begins with in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include: fMRI experimental design including block design, event related and exploratory data analysis methods, and building and applying statistical models for fMRI data; and human subject issues including informed consent, institutional review board requirements and safety in the high field environment. Additional Facul This team-taught multidisciplinary course provides information relevant to the conduct and interpretation of human brain mapping studies. It begins with in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include: fMRI experimental design including block design, event related and exploratory data analysis methods, and building and applying statistical models for fMRI data; and human subject issues including informed consent, institutional review board requirements and safety in the high field environment. Additional FaculSubjects

medical imaging | medical imaging | medical lab | medical lab | medical technology | medical technology | magnetic resonance imaging | magnetic resonance imaging | MRI | MRI | fMRI | fMRI | signal processing | signal processing | human brain mapping | human brain mapping | function | function | image formation physics | image formation physics | metabolism | metabolism | psychology | psychology | physiology | physiology | image signals | image signals | image processing | image processing | parenchymal | parenchymal | cerebrovascular neuroanatomy | cerebrovascular neuroanatomy | neurology | neurology | functional data analysis | functional data analysis | experimental design | experimental design | statistical models | statistical models | human subjects | human subjects | informed consent | informed consent | institutional review board requirements | institutional review board requirements | safety | safety | medical | medical | brain scan | brain scan | brain imaging | brain imaging | DTI | DTI | vision | visionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course presents the fundamentals of digital signal processing with particular emphasis on problems in biomedical research and clinical medicine. It covers principles and algorithms for processing both deterministic and random signals. Topics include data acquisition, imaging, filtering, coding, feature extraction, and modeling. The focus of the course is a series of labs that provide practical experience in processing physiological data, with examples from cardiology, speech processing, and medical imaging. The labs are done in MATLAB® during weekly lab sessions that take place in an electronic classroom. Lectures cover signal processing topics relevant to the lab exercises, as well as background on the biological signals processed in the labs. This course presents the fundamentals of digital signal processing with particular emphasis on problems in biomedical research and clinical medicine. It covers principles and algorithms for processing both deterministic and random signals. Topics include data acquisition, imaging, filtering, coding, feature extraction, and modeling. The focus of the course is a series of labs that provide practical experience in processing physiological data, with examples from cardiology, speech processing, and medical imaging. The labs are done in MATLAB® during weekly lab sessions that take place in an electronic classroom. Lectures cover signal processing topics relevant to the lab exercises, as well as background on the biological signals processed in the labs.Subjects

HST.582 | HST.582 | 6.555 | 6.555 | 16.456 | 16.456 | signal processing | signal processing | medicine | medicine | biological signal | biological signal | diagnosis | diagnosis | diagnostic tool | diagnostic tool | physiology | physiology | cardiology | cardiology | speech recognition | speech recognition | speech processing | speech processing | imaging | imaging | medical imaging | medical imaging | MRI | MRI | ultrasound | ultrasound | ECG | ECG | electrocardiogram | electrocardiogram | fourier | fourier | FFT | FFT | applications of probabilitym | applications of probabilitym | noise | noise | MATLAB | MATLAB | digital filter | digital filter | DSP | DSPLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is taken mainly by undergraduates, and explores ideas involving signals, systems and probabilistic models in the context of communication, control and signal processing applications. The material expands out from the basics in 6.003 and 6.041. The treatment involves aspects of analysis, synthesis, and optimization. Topics covered differ somewhat from semester to semester, but typically include: random processes, correlations, spectral densities, state-space modeling, multirate processing, signal estimation and detection. This course is taken mainly by undergraduates, and explores ideas involving signals, systems and probabilistic models in the context of communication, control and signal processing applications. The material expands out from the basics in 6.003 and 6.041. The treatment involves aspects of analysis, synthesis, and optimization. Topics covered differ somewhat from semester to semester, but typically include: random processes, correlations, spectral densities, state-space modeling, multirate processing, signal estimation and detection.Subjects

Input-output | Input-output | state-space models | state-space models | linear systems | linear systems | deterministic and random signals | deterministic and random signals | time- and transform-domain representations | time- and transform-domain representations | sampling | sampling | discrete-time processing | discrete-time processing | continuous-time signals | continuous-time signals | state feedback | state feedback | observers | observers | probabilistic models | probabilistic models | stochastic processes | stochastic processes | correlation functions | correlation functions | power spectra | power spectra | whitening filters | whitening filters | Detection | Detection | matched filters | matched filters | Least-mean square error estimation | Least-mean square error estimation | Wiener filtering | Wiener filteringLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataBE.440 Analysis of Biological Networks (MIT) BE.440 Analysis of Biological Networks (MIT)

Description

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemica This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. ChemicaSubjects

systems | systems | networks | networks | biochemistry | biochemistry | biology | biology | chemistry | chemistry | chemotaxis | chemotaxis | lactation | lactation | interferon | interferon | response | response | DNA | DNA | replication | replication | translation | translation | transcription | transcription | RNA | RNA | IFN | IFN | signals | signals | signaling | signaling | cellular | cellular | receptor | receptorLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataPres't Wilson's study, Paris (LOC) Pres't Wilson's study, Paris (LOC)

Description

Subjects

libraryofcongress | libraryofcongress | signal | signal | corps | corps | signalcorps | signalcorps | wwi | wwi | woodrowwilson | woodrowwilson | france | france | 1919 | 1919 | 153463 | 153463License

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This class teaches the fundamentals of signals and information theory with emphasis on modeling audio/visual messages and physiologically derived signals, and the human source or recipient. Topics include linear systems, difference equations, Z-transforms, sampling and sampling rate conversion, convolution, filtering, modulation, Fourier analysis, entropy, noise, and Shannon's fundamental theorems. Additional topics may include data compression, filter design, and feature detection. The undergraduate subject MAS.160 meets with the two half-semester graduate subjects MAS.510 and MAS.511, but assignments differ. This class teaches the fundamentals of signals and information theory with emphasis on modeling audio/visual messages and physiologically derived signals, and the human source or recipient. Topics include linear systems, difference equations, Z-transforms, sampling and sampling rate conversion, convolution, filtering, modulation, Fourier analysis, entropy, noise, and Shannon's fundamental theorems. Additional topics may include data compression, filter design, and feature detection. The undergraduate subject MAS.160 meets with the two half-semester graduate subjects MAS.510 and MAS.511, but assignments differ.Subjects

audio | audio | visual | visual | video | video | A/V | A/V | digital media | digital media | digital audio | digital audio | digital video | digital video | photography | photography | digitial photography | digitial photography | spectrum | spectrum | Spectrum plot | Spectrum plot | amplitude modulation | amplitude modulation | AM | AM | Fourier series | Fourier series | frequency modulation | frequency modulation | FM | FM | orthogonality | orthogonality | Walsh functions | Walsh functions | basis sets. Sampling theorem | basis sets. Sampling theorem | aliasing | aliasing | reconstruction | reconstruction | FFT | FFT | DFT | DFT | DTFT | DTFT | z-transform | z-transform | IIR | IIR | frequency response | frequency response | filter | filter | filter response | filter response | impulse response | impulse response | noise | noise | communications system | communications system | communications theory | communications theory | information theory | information theory | communication channel | communication channel | coding | coding | error correction | error correction | DSP | DSP | signal processing | signal processing | digital signal processing | digital signal processingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03SC Differential Equations (MIT) 18.03SC Differential Equations (MIT)

Description

Includes audio/video content: AV lectures. The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering. Includes audio/video content: AV lectures. The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering.Subjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Includes audio/video content: AV lectures. Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Includes audio/video content: AV lectures. Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time.Subjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Cells, regardless of whether they are in an organ in the human body or a component of a bacterial colony, can sense the chemical composition of the environment, the presence of neighboring cells, and even the types of their neighboring cells. Depending on the identity of a cell and the information it receives from its environment, it can grow (increase in size), proliferate (make more cells), become quiescent (stop growing and dividing), differentiate (make different types of cells), or die. How cells achieve the astonishing feat of appropriately sensing and responding to their environment has been a major question in biology. In this course we will read and critically discuss the primary scientific literature with the goal of highlighting the basic principles of cell growth, adaptation, a Cells, regardless of whether they are in an organ in the human body or a component of a bacterial colony, can sense the chemical composition of the environment, the presence of neighboring cells, and even the types of their neighboring cells. Depending on the identity of a cell and the information it receives from its environment, it can grow (increase in size), proliferate (make more cells), become quiescent (stop growing and dividing), differentiate (make different types of cells), or die. How cells achieve the astonishing feat of appropriately sensing and responding to their environment has been a major question in biology. In this course we will read and critically discuss the primary scientific literature with the goal of highlighting the basic principles of cell growth, adaptation, aSubjects

Cell growth | Cell growth | cell cycle | cell cycle | bacteria | bacteria | cell signaling | cell signaling | yeast | yeast | Genetic regulation | Genetic regulation | signaling pathways | signaling pathways | RAS | RAS | TOR (Target Of Rapamycin) | TOR (Target Of Rapamycin) | sporulation | sporulation | IME1 | IME1 | biofilms | biofilmsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues andSubjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods Matrix systems | Laplace transform methods Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagramsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.36 Communication Systems Engineering (MIT) 16.36 Communication Systems Engineering (MIT)

Description

This course will cover fundamentals of digital communications and networking. We will study the basics of information theory, sampling and quantization, coding, modulation, signal detection and system performance in the presence of noise. The study of data networking will include multiple access, reliable packet transmission, routing and protocols of the internet. The concepts taught in class will be discussed in the context of aerospace communication systems: aircraft communications, satellite communications, and deep space communications. This course will cover fundamentals of digital communications and networking. We will study the basics of information theory, sampling and quantization, coding, modulation, signal detection and system performance in the presence of noise. The study of data networking will include multiple access, reliable packet transmission, routing and protocols of the internet. The concepts taught in class will be discussed in the context of aerospace communication systems: aircraft communications, satellite communications, and deep space communications.Subjects

digital communications | digital communications | networking | networking | information theory | information theory | sampling | sampling | quantization | quantization | coding | coding | modulation | modulation | signal detection | signal detection | data networking | data networking | multiple access | multiple access | packet transmission | packet transmission | routing | routing | aerospace communication | aerospace communication | aircraft communication | aircraft communication | satellite communication | satellite communication | deep space communication | deep space communication | communication systems haykin | communication systems haykin | computer networks tanenbaum | computer networks tanenbaum | communication systems engineering proakis | communication systems engineering proakis | sampling theorem | sampling theorem | entropy | entropy | signal detection in noise | signal detection in noise | delay models | delay modelsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata