Searching for simplicity : 9 results found | RSS Feed for this search

18.996A Simplicity Theory (MIT) 18.996A Simplicity Theory (MIT)

Description

This is an advanced topics course in model theory whose main theme is simple theories. We treat simple theories in the framework of compact abstract theories, which is more general than that of first order theories. We cover the basic properties of independence (i.e., non-dividing) in simple theories, the characterization of simple theories by the existence of a notion of independence, and hyperimaginary canonical bases. This is an advanced topics course in model theory whose main theme is simple theories. We treat simple theories in the framework of compact abstract theories, which is more general than that of first order theories. We cover the basic properties of independence (i.e., non-dividing) in simple theories, the characterization of simple theories by the existence of a notion of independence, and hyperimaginary canonical bases.Subjects

universal domains | universal domains | compact abstract theories | compact abstract theories | indiscernibility | indiscernibility | indiscernible sequences | indiscernible sequences | dividing | dividing | simplicity | simplicity | independence | independence | Lascar strong types | Lascar strong types | independence theorem | independence theorem | hyperimaginaries | hyperimaginaries | canonical bases | canonical bases | supersimplicity | supersimplicity | Lascar inequalities | Lascar inequalities | stability | stability | stable theories | stable theories | generic automorphism | generic automorphism | type-definable groups | type-definable groups | lovely pairs | lovely pairsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.856J Randomized Algorithms (MIT) 6.856J Randomized Algorithms (MIT)

Description

This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms. This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms.Subjects

Randomized Algorithms | Randomized Algorithms | algorithms | algorithms | efficient in time and space | efficient in time and space | randomization | randomization | computational problems | computational problems | data structures | data structures | graph algorithms | graph algorithms | optimization | optimization | geometry | geometry | Markov chains | Markov chains | sampling | sampling | estimation | estimation | geometric algorithms | geometric algorithms | parallel and distributed algorithms | parallel and distributed algorithms | parallel and ditributed algorithm | parallel and ditributed algorithm | parallel and distributed algorithm | parallel and distributed algorithm | random sampling | random sampling | random selection of witnesses | random selection of witnesses | symmetry breaking | symmetry breaking | randomized computational models | randomized computational models | hash tables | hash tables | skip lists | skip lists | minimum spanning trees | minimum spanning trees | shortest paths | shortest paths | minimum cuts | minimum cuts | convex hulls | convex hulls | linear programming | linear programming | fixed dimension | fixed dimension | arbitrary dimension | arbitrary dimension | approximate counting | approximate counting | parallel algorithms | parallel algorithms | online algorithms | online algorithms | derandomization techniques | derandomization techniques | probabilistic analysis | probabilistic analysis | computational number theory | computational number theory | simplicity | simplicity | speed | speed | design | design | basic probability theory | basic probability theory | application | application | randomized complexity classes | randomized complexity classes | game-theoretic techniques | game-theoretic techniques | Chebyshev | Chebyshev | moment inequalities | moment inequalities | limited independence | limited independence | coupon collection | coupon collection | occupancy problems | occupancy problems | tail inequalities | tail inequalities | Chernoff bound | Chernoff bound | conditional expectation | conditional expectation | probabilistic method | probabilistic method | random walks | random walks | algebraic techniques | algebraic techniques | probability amplification | probability amplification | sorting | sorting | searching | searching | combinatorial optimization | combinatorial optimization | approximation | approximation | counting problems | counting problems | distributed algorithms | distributed algorithms | 6.856 | 6.856 | 18.416 | 18.416License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata14.147 Topics in Game Theory (MIT) 14.147 Topics in Game Theory (MIT)

Description

This course is an advanced topics course on market and mechanism design. We will study existing or new market institutions, understand their properties, and think about whether they can be re-engineered or improved. Topics discussed include mechanism design, auction theory, one-sided matching in house allocation, two-sided matching, stochastic matching mechanisms, student assignment, and school choice. This course is an advanced topics course on market and mechanism design. We will study existing or new market institutions, understand their properties, and think about whether they can be re-engineered or improved. Topics discussed include mechanism design, auction theory, one-sided matching in house allocation, two-sided matching, stochastic matching mechanisms, student assignment, and school choice.Subjects

game theory | game theory | mechanism design | mechanism design | auction theory | auction theory | one-sided matching | one-sided matching | house allocation | house allocation | market problems | market problems | two-sided matching | two-sided matching | stability | stability | many-to-one | many-to-one | one-to-one | one-to-one | small cores | small cores | large markets | large markets | stochastic matching mechanisms | stochastic matching mechanisms | student assignment | student assignment | school choice | school choice | resale markets | resale markets | dynamics | dynamics | simplicity | simplicity | robustness | robustness | limited rationality | limited rationality | message spaces | message spaces | sharing risk | sharing risk | decentralized exchanges | decentralized exchanges | over-the-counter exchanges | over-the-counter exchangesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.996A Simplicity Theory (MIT)

Description

This is an advanced topics course in model theory whose main theme is simple theories. We treat simple theories in the framework of compact abstract theories, which is more general than that of first order theories. We cover the basic properties of independence (i.e., non-dividing) in simple theories, the characterization of simple theories by the existence of a notion of independence, and hyperimaginary canonical bases.Subjects

universal domains | compact abstract theories | indiscernibility | indiscernible sequences | dividing | simplicity | independence | Lascar strong types | independence theorem | hyperimaginaries | canonical bases | supersimplicity | Lascar inequalities | stability | stable theories | generic automorphism | type-definable groups | lovely pairsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

3 blind women examining articles worn by soldiers at Sunderland Museums, 1913. ?To them, their fingers are eyes? From 1913, John Alfred Charlton Deas, a former curator at Sunderland Museum, organised several handling sessions for the blind, first offering an invitation to the children from the Sunderland Council Blind School, to handle a few of the collections at Sunderland Museum, which was ?eagerly accepted?. Ref: TWCMS:K13823.3 view the set www.flickr.com/photos/twm_news/sets/72157626903151525/ (Copyright) We're happy for you to share this digital image within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure - for image licensing enquiries please follow this link www.twmuseums.org.uk/image-licensing/Subjects

blind | children | adults | johnalfredcharltondeas | charltondeas | handlingsessions | sunderland | sunderlandmuseum | touch | see | objects | collections | access | curator | sessions | northeast | newcastleupontyne | tyneandwear | museum | twam | tyneandweararchivesandmuseums | oldphotographs | oldphotos | firstworldwar | socialhistory | women | dress | fabric | crease | standing | room | seeingthroughtouch | blindness | 3blindwomen | examining | examinaton | articles | clothing | uniform | soldiers | northeastofengland | unitedkingdom | hendon | england | sunderlandmuseums | 1913 | fingers | hand | senses | eyes | ww1 | formercurator | invitation | sunderlandcouncilblindschool | educational | artefacts | profound | simplicity | painting | frame | portrait | industry | archives | digitalimage | wall | floor | shine | boots | gathering | attentive | handling | object | man | apron | blackandwhitephotographLicense

No known copyright restrictionsSite sourced from

Tyne & Wear Archives & Museums | FlickRAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

29 minutes 14 secondsSubjects

floral simplicity | bow making | wire techniques | floristry | creating a buttonhole | hook method | calyx method | pin and calyx method | wiring foliage | threading berries | ARTS and CRAFTS | JLicense

Attribution-Noncommercial 2.0 UK: England & Wales Attribution-Noncommercial 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc/2.0/uk/ http://creativecommons.org/licenses/by-nc/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataFloral Simplicity - Presentations

Description

PowerPoint Presentation - Tools In Depth (no animation)Subjects

floral simplicity | basic wired design | tools in depth | wire techniques | accessories used in floral art | powerpoint presentation | ppt | ARTS and CRAFTS | JLicense

Attribution-Noncommercial 2.0 UK: England & Wales Attribution-Noncommercial 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc/2.0/uk/ http://creativecommons.org/licenses/by-nc/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata14.147 Topics in Game Theory (MIT)

Description

This course is an advanced topics course on market and mechanism design. We will study existing or new market institutions, understand their properties, and think about whether they can be re-engineered or improved. Topics discussed include mechanism design, auction theory, one-sided matching in house allocation, two-sided matching, stochastic matching mechanisms, student assignment, and school choice.Subjects

game theory | mechanism design | auction theory | one-sided matching | house allocation | market problems | two-sided matching | stability | many-to-one | one-to-one | small cores | large markets | stochastic matching mechanisms | student assignment | school choice | resale markets | dynamics | simplicity | robustness | limited rationality | message spaces | sharing risk | decentralized exchanges | over-the-counter exchangesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.856J Randomized Algorithms (MIT)

Description

This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms.Subjects

Randomized Algorithms | algorithms | efficient in time and space | randomization | computational problems | data structures | graph algorithms | optimization | geometry | Markov chains | sampling | estimation | geometric algorithms | parallel and distributed algorithms | parallel and ditributed algorithm | parallel and distributed algorithm | random sampling | random selection of witnesses | symmetry breaking | randomized computational models | hash tables | skip lists | minimum spanning trees | shortest paths | minimum cuts | convex hulls | linear programming | fixed dimension | arbitrary dimension | approximate counting | parallel algorithms | online algorithms | derandomization techniques | probabilistic analysis | computational number theory | simplicity | speed | design | basic probability theory | application | randomized complexity classes | game-theoretic techniques | Chebyshev | moment inequalities | limited independence | coupon collection | occupancy problems | tail inequalities | Chernoff bound | conditional expectation | probabilistic method | random walks | algebraic techniques | probability amplification | sorting | searching | combinatorial optimization | approximation | counting problems | distributed algorithms | 6.856 | 18.416License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata