Searching for single crystals : 5 results found | RSS Feed for this search

3.35 Fracture and Fatigue (MIT) 3.35 Fracture and Fatigue (MIT)

Description

Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components. Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

Subjects

Linear elastic | Linear elastic | elastic-plastic fracture mechanics | elastic-plastic fracture mechanics | Microstructural effects on fracture | Microstructural effects on fracture | Toughening mechanisms | Toughening mechanisms | Crack growth resistance | Crack growth resistance | creep fracture | creep fracture | Interface fracture mechanics | Interface fracture mechanics | Fatigue damage | Fatigue damage | dislocation substructures | dislocation substructures | Variable amplitude fatigue | Variable amplitude fatigue | Corrosion fatigue | Corrosion fatigue | experimental methods | experimental methods | microstructural effects | microstructural effects | metals | metals | ceramics | ceramics | polymers | polymers | thin films | thin films | biological materials | biological materials | composites | composites | single crystals | single crystals | stress-life | stress-life | strain-life | strain-life | structural components | structural components | bioimplant components | bioimplant components | microelectronic components | microelectronic components | case studies | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.35 Fracture and Fatigue (MIT)

Description

Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

Subjects

Linear elastic | elastic-plastic fracture mechanics | Microstructural effects on fracture | Toughening mechanisms | Crack growth resistance | creep fracture | Interface fracture mechanics | Fatigue damage | dislocation substructures | Variable amplitude fatigue | Corrosion fatigue | experimental methods | microstructural effects | metals | ceramics | polymers | thin films | biological materials | composites | single crystals | stress-life | strain-life | structural components | bioimplant components | microelectronic components | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Mechanical Behaviour of Materials: Creep Deformation of Metals

Description

This set consists of an animation explaning Nabarro-Herring creep and Coble creep, and the simulation of a creeping coil experiment. From TLP: Creep Deformation of Metals

Subjects

creep | Coble creep | Nabarro-Herring creep | diffusion | dislocations | dislocation creep | stress exponent | activation energy | mechanical properties | turbine blades | nickel superalloys | solder | single crystals | DoITPoMS | University of Cambridge | animation | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_animations.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Mechanical Behaviour of Materials: Creep Deformation of Metals

Description

This set consists of an animation explaning Nabarro-Herring creep and Coble creep, and the simulation of a creeping coil experiment. From TLP: Creep Deformation of Metals

Subjects

creep | coble creep | nabarro-herring creep | diffusion | dislocations | dislocation creep | stress exponent | activation energy | mechanical properties | turbine blades | nickel superalloys | solder | single crystals | doitpoms | university of cambridge | animation | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.35 Fracture and Fatigue (MIT)

Description

Investigation of linear elastic and elastic-plastic fracture mechanics. Topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Also covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

Subjects

Linear elastic | elastic-plastic fracture mechanics | Microstructural effects on fracture | Toughening mechanisms | Crack growth resistance | creep fracture | Interface fracture mechanics | Fatigue damage | dislocation substructures | Variable amplitude fatigue | Corrosion fatigue | experimental methods | microstructural effects | metals | ceramics | polymers | thin films | biological materials | composites | single crystals | stress-life | strain-life | structural components | bioimplant components | microelectronic components | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata