Searching for singularity : 9 results found | RSS Feed for this search

SP.256 The Coming Years (MIT) SP.256 The Coming Years (MIT)

Description

Explore the future through modeling, reading, and discussion in an open-ended seminar! Our fields of interest will include changes in science and technology, culture and lifestyles, and dominant paradigms and societies. Explore the future through modeling, reading, and discussion in an open-ended seminar! Our fields of interest will include changes in science and technology, culture and lifestyles, and dominant paradigms and societies.

Subjects

futurology | futurology | historiography | historiography | change | change | fractals | fractals | nuclear war | nuclear war | global warming | global warming | bioterrorism | bioterrorism | singularity | singularity | politics | politics | memetics | memetics | demographics | demographics | power laws | power laws | recent past | recent past | near future | near future | prediction | prediction | history | history | revolution | revolution | memes | memes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. 6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points.

Subjects

circuit | circuit | electronic | electronic | abstraction | abstraction | lumped circuit | lumped circuit | digital | digital | amplifier | amplifier | differential equations | differential equations | time behavior | time behavior | energy storage | energy storage | semiconductor diode | semiconductor diode | field-effect | field-effect | field-effect transistor | field-effect transistor | resistor | resistor | source | source | inductor | inductor | capacitor | capacitor | diode | diode | series-parallel reduction | series-parallel reduction | voltage | voltage | current divider | current divider | node method | node method | linearity | linearity | superposition | superposition | Thevenin-Norton equivalent | Thevenin-Norton equivalent | power flow | power flow | Boolean algebra | Boolean algebra | binary signal | binary signal | MOSFET | MOSFET | noise margin | noise margin | singularity functions | singularity functions | sinusoidal-steady-state | sinusoidal-steady-state | impedance | impedance | frequency response curves | frequency response curves | operational amplifier | operational amplifier | Op-Amp | Op-Amp | negative feedback | negative feedback | positive feedback | positive feedback

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.511 Theory of Solids I (MIT) 8.511 Theory of Solids I (MIT)

Description

This is the first term of a theoretical treatment of the physics of solids. Topics covered include crystal structure and band theory, density functional theory, a survey of properties of metals and semiconductors, quantum Hall effect, phonons, electron phonon interaction and superconductivity. This is the first term of a theoretical treatment of the physics of solids. Topics covered include crystal structure and band theory, density functional theory, a survey of properties of metals and semiconductors, quantum Hall effect, phonons, electron phonon interaction and superconductivity.

Subjects

physics of solids | physics of solids | elementary excitations | elementary excitations | symmetry | symmetry | theory of representations | theory of representations | energy bands | energy bands | excitons | excitons | critical points | critical points | response functions | response functions | interactions in the electron gas | interactions in the electron gas | electronic structure of metals | semimetals | electronic structure of metals | semimetals | semiconductors | semiconductors | insulators | insulators | Free electron model | Free electron model | Crystalline lattice | Crystalline lattice | Debye Waller factor | Debye Waller factor | Bravais lattice | Bravais lattice | Pseudopotential | Pseudopotential | van Hove singularity | van Hove singularity | Bloch oscillation | Bloch oscillation | quantization of orbits | quantization of orbits | de Haas-van Alphen effect | de Haas-van Alphen effect | Quantum Hall effect | Quantum Hall effect | Electron-electron interaction | Electron-electron interaction | Hartree-Fock approximation | Hartree-Fock approximation | Exchange energy for Jellium | Exchange energy for Jellium | Density functional theory | Density functional theory | Hubbard model | Hubbard model | Electron-phonon coupling | Electron-phonon coupling | phonons | phonons

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.256 The Coming Years (MIT) ES.256 The Coming Years (MIT)

Description

Explore the future through modeling, reading, and discussion in an open-ended seminar! Our fields of interest will include changes in science and technology, culture and lifestyles, and dominant paradigms and societies. Explore the future through modeling, reading, and discussion in an open-ended seminar! Our fields of interest will include changes in science and technology, culture and lifestyles, and dominant paradigms and societies.

Subjects

futurology | futurology | historiography | historiography | change | change | fractals | fractals | nuclear war | nuclear war | global warming | global warming | bioterrorism | bioterrorism | singularity | singularity | politics | politics | memetics | memetics | demographics | demographics | power laws | power laws | recent past | recent past | near future | near future | prediction | prediction | history | history | revolution | revolution | memes | memes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ES.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.511 Theory of Solids I (MIT)

Description

This is the first term of a theoretical treatment of the physics of solids. Topics covered include crystal structure and band theory, density functional theory, a survey of properties of metals and semiconductors, quantum Hall effect, phonons, electron phonon interaction and superconductivity.

Subjects

physics of solids | elementary excitations | symmetry | theory of representations | energy bands | excitons | critical points | response functions | interactions in the electron gas | electronic structure of metals | semimetals | semiconductors | insulators | Free electron model | Crystalline lattice | Debye Waller factor | Bravais lattice | Pseudopotential | van Hove singularity | Bloch oscillation | quantization of orbits | de Haas-van Alphen effect | Quantum Hall effect | Electron-electron interaction | Hartree-Fock approximation | Exchange energy for Jellium | Density functional theory | Hubbard model | Electron-phonon coupling | phonons

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.SP.256 The Coming Years (MIT)

Description

Explore the future through modeling, reading, and discussion in an open-ended seminar! Our fields of interest will include changes in science and technology, culture and lifestyles, and dominant paradigms and societies.

Subjects

futurology | historiography | change | fractals | nuclear war | global warming | bioterrorism | singularity | politics | memetics | demographics | power laws | recent past | near future | prediction | history | revolution | memes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ES.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT)

Description

6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points.

Subjects

circuit | electronic | abstraction | lumped circuit | digital | amplifier | differential equations | time behavior | energy storage | semiconductor diode | field-effect | field-effect transistor | resistor | source | inductor | capacitor | diode | series-parallel reduction | voltage | current divider | node method | linearity | superposition | Thevenin-Norton equivalent | power flow | Boolean algebra | binary signal | MOSFET | noise margin | singularity functions | sinusoidal-steady-state | impedance | frequency response curves | operational amplifier | Op-Amp | negative feedback | positive feedback

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.511 Theory of Solids I (MIT)

Description

This is the first term of a theoretical treatment of the physics of solids. Topics covered include crystal structure and band theory, density functional theory, a survey of properties of metals and semiconductors, quantum Hall effect, phonons, electron phonon interaction and superconductivity.

Subjects

physics of solids | elementary excitations | symmetry | theory of representations | energy bands | excitons | critical points | response functions | interactions in the electron gas | electronic structure of metals | semimetals | semiconductors | insulators | Free electron model | Crystalline lattice | Debye Waller factor | Bravais lattice | Pseudopotential | van Hove singularity | Bloch oscillation | quantization of orbits | de Haas-van Alphen effect | Quantum Hall effect | Electron-electron interaction | Hartree-Fock approximation | Exchange energy for Jellium | Density functional theory | Hubbard model | Electron-phonon coupling | phonons

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ES.256 The Coming Years (MIT)

Description

Explore the future through modeling, reading, and discussion in an open-ended seminar! Our fields of interest will include changes in science and technology, culture and lifestyles, and dominant paradigms and societies.

Subjects

futurology | historiography | change | fractals | nuclear war | global warming | bioterrorism | singularity | politics | memetics | demographics | power laws | recent past | near future | prediction | history | revolution | memes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata