Searching for solid : 359 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Consolidated B-24D Liberator Consolidated B-24D Liberator

Description

Subjects

airplane | airplane | aircraft | aircraft | wwii | wwii | nasa | nasa | bomber | bomber | liberator | liberator | b24 | b24 | 1943 | 1943 | b24d | b24d | naca | naca | wwiibomber | wwiibomber | b24liberator | b24liberator | consolidatedb24liberator | consolidatedb24liberator | consolidatedb24d | consolidatedb24d | consolidatedb24 | consolidatedb24 | consolidatedaircraft | consolidatedaircraft | consolidatedb24dliberator | consolidatedb24dliberator | consolidatedliberator | consolidatedliberator | nasalangleyresearchcenter | nasalangleyresearchcenter | liberatorbomber | liberatorbomber

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Arthur Bussy Collection Image Arthur Bussy Collection Image

Description

Subjects

pby | pby | aviation | aviation | aircraft | aircraft | airplane | airplane | flyingboat | flyingboat | seaplane | seaplane | militaryaviation | militaryaviation | navalaviation | navalaviation | consolidatedaircraft | consolidatedaircraft | consolidated | consolidated | consolidatedpbycatalina | consolidatedpbycatalina | consolidatedpby | consolidatedpby | pbycatalina | pbycatalina | consolidatedcatalina | consolidatedcatalina | catalina | catalina

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.012 Fundamentals of Materials Science (MIT) 3.012 Fundamentals of Materials Science (MIT)

Description

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all

Subjects

fundamentals of bonding | energetics | and structure | fundamentals of bonding | energetics | and structure | Quantum mechanical descriptions of interacting electrons and atoms | Quantum mechanical descriptions of interacting electrons and atoms | Symmetry properties of molecules and solids | Symmetry properties of molecules and solids | complex and disordered materials | complex and disordered materials | thermodynamic functions | thermodynamic functions | equilibrium properties | equilibrium properties | macroscopic behavior | macroscopic behavior | molecular models | molecular models | heat capacities | heat capacities | phase transformations | phase transformations | multiphase equilibria | multiphase equilibria | chemical reactions | chemical reactions | magnetism | magnetism | engineered alloys | engineered alloys | electronic and magnetic materials | electronic and magnetic materials | ionic and network solids | ionic and network solids | polymers | polymers | biomaterials | biomaterials | energetics | energetics | structure | structure | materials science | materials science | electrons | electrons | silicon | silicon | DNA | DNA | electronic bonding | electronic bonding | energy | energy | stability | stability | quantum mechanics | quantum mechanics | atoms | atoms | interactions | interactions | symmetry | symmetry | molecules | molecules | solids | solids | complex material | complex material | disorderd materials | disorderd materials | thermodynamic laws | thermodynamic laws | electronic materials | electronic materials | magnetic materials | magnetic materials | ionic solids | ionic solids | network solids | network solids | statistical mechanics | statistical mechanics | microstates | microstates | microscopic complexity | microscopic complexity | entropy | entropy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.091 Introduction to Solid State Chemistry (MIT) 3.091 Introduction to Solid State Chemistry (MIT)

Description

This course explores the basic principles of chemistry and their application to engineering systems. It deals with the relationship between electronic structure, chemical bonding, and atomic order. It also investigates the characterization of atomic arrangements in crystalline and amorphous solids: metals, ceramics, semiconductors, and polymers (including proteins). Topics covered include organic chemistry, solution chemistry, acid-base equilibria, electrochemistry, biochemistry, chemical kinetics, diffusion, and phase diagrams. Examples are drawn from industrial practice (including the environmental impact of chemical processes), from energy generation and storage, e.g., batteries and fuel cells, and from emerging technologies, e.g., photonic and biomedical devices. This course explores the basic principles of chemistry and their application to engineering systems. It deals with the relationship between electronic structure, chemical bonding, and atomic order. It also investigates the characterization of atomic arrangements in crystalline and amorphous solids: metals, ceramics, semiconductors, and polymers (including proteins). Topics covered include organic chemistry, solution chemistry, acid-base equilibria, electrochemistry, biochemistry, chemical kinetics, diffusion, and phase diagrams. Examples are drawn from industrial practice (including the environmental impact of chemical processes), from energy generation and storage, e.g., batteries and fuel cells, and from emerging technologies, e.g., photonic and biomedical devices.

Subjects

solid state chemistry; electronic structure; chemical bonding; crystal structure; atomic and molecular arrangements; crystalline and amorphous solids | solid state chemistry; electronic structure; chemical bonding; crystal structure; atomic and molecular arrangements; crystalline and amorphous solids | solid state chemistry | solid state chemistry | electronic structure | electronic structure | chemical bonding | chemical bonding | crystal structure | crystal structure | atomic and molecular arrangements | atomic and molecular arrangements | crystalline and amorphous solids | crystalline and amorphous solids

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.091SC Introduction to Solid State Chemistry (MIT) 3.091SC Introduction to Solid State Chemistry (MIT)

Description

Introduction to Solid State Chemistry is a first-year single-semester college course on the principles of chemistry. This unique and popular course satisfies MIT's general chemistry degree requirement, with an emphasis on solid-state materials and their application to engineering systems. Introduction to Solid State Chemistry is a first-year single-semester college course on the principles of chemistry. This unique and popular course satisfies MIT's general chemistry degree requirement, with an emphasis on solid-state materials and their application to engineering systems.

Subjects

solid state chemistry | solid state chemistry | atomic structure | atomic structure | atomic bonding | atomic bonding | crystal structure | crystal structure | crystalline solid | crystalline solid | periodic table | periodic table | electron shell | electron shell | x-ray spectroscopy | x-ray spectroscopy | amorphous solid | amorphous solid | reaction kinetics | reaction kinetics | aqueous solution | aqueous solution | solid solution | solid solution | biomaterial | biomaterial | polymer | polymer | semiconductor | semiconductor | phase diagram | phase diagram | material processing | material processing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.012 Fundamentals of Materials Science (MIT) 3.012 Fundamentals of Materials Science (MIT)

Description

This course focuses on the fundamentals of structure, energetics, and bonding that underpin materials science. It is the introductory lecture class for sophomore students in Materials Science and Engineering, taken with 3.014 and 3.016 to create a unified introduction to the subject. Topics include: an introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to atomistic and molecular models of materials; the role of electronic bonding in determining the energy, structure, and stability of materials; quantum mechanical descriptions of interacting electrons and atoms; materials phenomena, such as heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism; symmetry properties of molecules and s This course focuses on the fundamentals of structure, energetics, and bonding that underpin materials science. It is the introductory lecture class for sophomore students in Materials Science and Engineering, taken with 3.014 and 3.016 to create a unified introduction to the subject. Topics include: an introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to atomistic and molecular models of materials; the role of electronic bonding in determining the energy, structure, and stability of materials; quantum mechanical descriptions of interacting electrons and atoms; materials phenomena, such as heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism; symmetry properties of molecules and s

Subjects

bonding | bonding | energetics | energetics | structure | structure | antibonding | antibonding | hydrogen | hydrogen | Quantum mechanics | Quantum mechanics | electron | electron | atom | atom | molecule | molecule | molecular dynamics | molecular dynamics | MD | MD | Symmetry properties | Symmetry properties | solid | solid | gas | gas | liquid | liquid | phase | phase | matter; molecular geometry | matter; molecular geometry | complex and disordered materials | complex and disordered materials | thermodynamics | thermodynamics | equilibrium property | equilibrium property | macroscopic behavior | macroscopic behavior | molecular model | molecular model | heat capacity | heat capacity | phase transformation | phase transformation | multiphase equilibria | multiphase equilibria | chemical reaction | chemical reaction | magnetism | magnetism | engineered alloy | engineered alloy | electronic and magnetic material | electronic and magnetic material | ionic solid | ionic solid | network solid | network solid | polymer | polymer | biomaterial | biomaterial | glass | glass | liquid crystal | liquid crystal | LCD | LCD | matter | matter | molecular geometry | molecular geometry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.016 Mathematics for Materials Scientists and Engineers (MIT) 3.016 Mathematics for Materials Scientists and Engineers (MIT)

Description

The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site. The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site.

Subjects

energetics | energetics | materials structure and symmetry: applied fields | materials structure and symmetry: applied fields | mechanics and physics of solids and soft materials | mechanics and physics of solids and soft materials | linear algebra | linear algebra | orthonormal basis | orthonormal basis | eigenvalues | eigenvalues | eigenvectors | eigenvectors | quadratic forms | quadratic forms | tensor operations | tensor operations | symmetry operations | symmetry operations | calculus | calculus | complex analysis | complex analysis | differential equations | differential equations | theory of distributions | theory of distributions | fourier analysis | fourier analysis | random walks | random walks | mathematical technicques | mathematical technicques | materials science | materials science | materials engineering | materials engineering | materials structure | materials structure | symmetry | symmetry | applied fields | applied fields | materials response | materials response | solids mechanics | solids mechanics | solids physics | solids physics | soft materials | soft materials | multi-variable calculus | multi-variable calculus | ordinary differential equations | ordinary differential equations | partial differential equations | partial differential equations | applied mathematics | applied mathematics | mathematical techniques | mathematical techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

AL237-002 B-24D 42-40914 90th BG 320th BS

Description

Subjects

airplane | aircraft | aviation | bomber | liberator | b24 | noseart | goldenlady | militaryaviation | b24d | jollyrogers | b24liberator | consolidatedb24liberator | consolidatedb24d | consolidatedb24 | consolidatedaircraft | consolidatedb24dliberator | consolidatedliberator | 90thbombgroup | b24dliberator | 4240914

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

AL237-009 B-24D 41-23849 90th BG 320th BS -The Eager Beaver-

Description

Subjects

airplane | aircraft | aviation | bomber | liberator | b24 | noseart | militaryaviation | b24d | eagerbeaver | jollyrogers | b24liberator | consolidatedb24liberator | consolidatedb24d | consolidatedb24 | consolidatedaircraft | consolidatedb24dliberator | consolidatedliberator | 90thbombgroup | missionmarkings | b24dliberator | theeagerbeaver | 4123849

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

AL237-003 B-24D 41-23836 90th BG 320th BS -C.O.D. Knot for Tojo-

Description

Subjects

airplane | aircraft | aviation | bomber | liberator | b24 | noseart | militaryaviation | b24d | jollyrogers | b24liberator | consolidatedb24liberator | consolidatedb24d | consolidatedb24 | consolidatedaircraft | consolidatedb24dliberator | consolidatedliberator | 90thbombgroup | missionmarkings | b24dliberator | 4123836 | codknotfortojo | knotfortojo

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

AL237-005 B-24D 41-23765 90th BG 320th BS -Connell's Special-

Description

Subjects

airplane | aircraft | aviation | bomber | liberator | b24 | noseart | militaryaviation | b24d | jollyrogers | b24liberator | consolidatedb24liberator | consolidatedb24d | consolidatedb24 | consolidatedaircraft | consolidatedb24dliberator | consolidatedliberator | 90thbombgroup | missionmarkings | b24dliberator | connellsspecial | 4123765

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

AL237-022 B-24D 41-23720 90th BG 321st BS -Tear-Ass, the Bull-

Description

Subjects

airplane | aircraft | aviation | bomber | liberator | b24 | noseart | militaryaviation | b24d | jollyrogers | tearass | b24liberator | consolidatedb24liberator | consolidatedb24d | consolidatedb24 | consolidatedaircraft | consolidatedb24dliberator | consolidatedliberator | 90thbombgroup | b24dliberator | tearassthebull | 4123720

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

AL237-023 B-24D 41-23698 90th BG 319th BS -Roarin' Rosie-

Description

Subjects

airplane | aircraft | aviation | cockpit | bomber | liberator | b24 | noseart | militaryaviation | b24d | jollyrogers | b24liberator | consolidatedb24liberator | consolidatedb24d | consolidatedb24 | consolidatedaircraft | consolidatedb24dliberator | consolidatedliberator | 90thbombgroup | missionmarkings | b24dliberator | roarinrosie | 4123698

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

AL237-039 B-24D 41-24074 90th BG 319th BS -Tokio Express-

Description

Subjects

airplane | aircraft | aviation | bomber | liberator | b24 | noseart | militaryaviation | b24d | jollyrogers | b24liberator | consolidatedb24liberator | consolidatedb24d | consolidatedb24 | consolidatedaircraft | consolidatedb24dliberator | consolidatedliberator | 90thbombgroup | missionmarkings | b24dliberator | 4124074 | tokioexpress

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

AL237-021 B-24D 41-23869 90th BG 321st BS -Star Duster-

Description

Subjects

airplane | aircraft | aviation | bomber | liberator | b24 | noseart | militaryaviation | b24d | jollyrogers | starduster | b24liberator | consolidatedb24liberator | consolidatedb24d | consolidatedb24 | consolidatedaircraft | consolidatedliberator | iation | 90thbombgroup | missionmarkings | b24dliberator | 4123869 | avaviation | consoldiatedb24dliberator

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.012 Fundamentals of Materials Science (MIT)

Description

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all

Subjects

fundamentals of bonding | energetics | and structure | Quantum mechanical descriptions of interacting electrons and atoms | Symmetry properties of molecules and solids | complex and disordered materials | thermodynamic functions | equilibrium properties | macroscopic behavior | molecular models | heat capacities | phase transformations | multiphase equilibria | chemical reactions | magnetism | engineered alloys | electronic and magnetic materials | ionic and network solids | polymers | biomaterials | energetics | structure | materials science | electrons | silicon | DNA | electronic bonding | energy | stability | quantum mechanics | atoms | interactions | symmetry | molecules | solids | complex material | disorderd materials | thermodynamic laws | electronic materials | magnetic materials | ionic solids | network solids | statistical mechanics | microstates | microscopic complexity | entropy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.800 Tribology (MIT) 2.800 Tribology (MIT)

Description

This course addresses the design of tribological systems: the interfaces between two or more bodies in relative motion. Fundamental topics include: geometric, chemical, and physical characterization of surfaces; friction and wear mechanisms for metals, polymers, and ceramics, including abrasive wear, delamination theory, tool wear, erosive wear, wear of polymers and composites; and boundary lubrication and solid-film lubrication. The course also considers the relationship between nano-tribology and macro-tribology, rolling contacts, tribological problems in magnetic recording and electrical contacts, and monitoring and diagnosis of friction and wear. Case studies are used to illustrate key points. This course addresses the design of tribological systems: the interfaces between two or more bodies in relative motion. Fundamental topics include: geometric, chemical, and physical characterization of surfaces; friction and wear mechanisms for metals, polymers, and ceramics, including abrasive wear, delamination theory, tool wear, erosive wear, wear of polymers and composites; and boundary lubrication and solid-film lubrication. The course also considers the relationship between nano-tribology and macro-tribology, rolling contacts, tribological problems in magnetic recording and electrical contacts, and monitoring and diagnosis of friction and wear. Case studies are used to illustrate key points.

Subjects

tribology | tribology | surfaces | surfaces | interface | interface | friction | friction | wear | wear | metal | metal | polymer | polymer | ceramics | ceramics | abrasive wear | abrasive wear | delamination theory | delamination theory | tool wear | tool wear | erosive wear | erosive wear | composites | composites | boundary lubrication | boundary lubrication | solid-film lubrication. nano-tribology | solid-film lubrication. nano-tribology | macro-tribology | macro-tribology | rolling contacts | rolling contacts | magnetic recording | magnetic recording | electrical contact | electrical contact | connector | connector | axiomatic design | axiomatic design | traction | traction | seals | seals | solid-film lubrication | solid-film lubrication | nano-tribology | nano-tribology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Geometría Gráfica Informática en Arquitectura I Geometría Gráfica Informática en Arquitectura I

Description

Teoría geométrica del objeto arquitectónico con herramientas informáticas. Esta asignatura se ocupa del estudio de las formas espaciales relacionadas con la arquitectura y de su representación, mediante el uso de los medios informáticos. Puede considerarse, en parte, como una profundización y ampliación de los conocimientos adquiridos por el alumno en Geometría Descriptiva; por otro lado, supone la aplicación, según los medios informáticos, de conceptos referentes a la expresión gráfica aprendidos en otras asignaturas de este mismo Área. Teoría geométrica del objeto arquitectónico con herramientas informáticas. Esta asignatura se ocupa del estudio de las formas espaciales relacionadas con la arquitectura y de su representación, mediante el uso de los medios informáticos. Puede considerarse, en parte, como una profundización y ampliación de los conocimientos adquiridos por el alumno en Geometría Descriptiva; por otro lado, supone la aplicación, según los medios informáticos, de conceptos referentes a la expresión gráfica aprendidos en otras asignaturas de este mismo Área.

Subjects

Bóveda | Bóveda | Expresión Gráfica en la Ingeniería | Expresión Gráfica en la Ingeniería | Módulo | Módulo | 3D network | 3D network | Laboratorios Jorba | Laboratorios Jorba | Modelado | Modelado | Extrusión | Extrusión | Construcciones Arquitectónicas | Construcciones Arquitectónicas | Red plana | Red plana | Mezquita Mihrimah | Mezquita Mihrimah | Orden toscano | Orden toscano | Dome | Dome | Platonic solids | Platonic solids | Dibujo | Dibujo | Booleana | Booleana | Graphic | Graphic | Solid | Solid | Dibujo 3D | Dibujo 3D | Arquitecto | Arquitecto | Architect | Architect | Poliedros semirregulares | Poliedros semirregulares | Hiperboloides | Hiperboloides | Polyhedron | Polyhedron | NURBS | NURBS | Render | Render | Malla | Malla | Computing | Computing | Ermita de la Virgen del Puerto | Ermita de la Virgen del Puerto | Surface | Surface | Particiones | Particiones | Historia del Arte | Historia del Arte | Poliedros regulares | Poliedros regulares | Red 3D | Red 3D | Choisy | Choisy | Axonometric | Axonometric | Network | Network | Pattern | Pattern | Geométrico | Geométrico | Mosque | Mosque | Spatial | Spatial | Sinan | Sinan | Red | Red | 3D | 3D | Form | Form | Perspectiva | Perspectiva | Ordenador | Ordenador | Ismael Garcia Rios | Ismael Garcia Rios | Lacería | Lacería | Paraboloides | Paraboloides | Axonometría | Axonometría | Souto de Moura | Souto de Moura | Revolve | Revolve | Kingo Houses | Kingo Houses | Santa María del Naranco | Santa María del Naranco | Pedro de Ribera | Pedro de Ribera | Regular tessellations | Regular tessellations | Expresión Gráfica Arquitectónica | Expresión Gráfica Arquitectónica | Architecture | Architecture | Molina de Aragón | Molina de Aragón | Tessellations | Tessellations | Ponte de Lima | Ponte de Lima | Arabesco | Arabesco | compactación | compactación | Pantheon | Pantheon | Computer | Computer | Eduardo Torroja | Eduardo Torroja | Fernández del Amo | Fernández del Amo | Ribbed vault | Ribbed vault | Organic architecture | Organic architecture | Superficie cuádrica | Superficie cuádrica | Arquitectura | Arquitectura | Miguel Fisac | Miguel Fisac | Crecimiento orgánico | Crecimiento orgánico | Autocad | Autocad | Symmetrical polyhedra | Symmetrical polyhedra | Rhinoceros | Rhinoceros | Domical vault | Domical vault | Templete de los Evangelistas | Templete de los Evangelistas | Gráfica | Gráfica | Luigi Canina | Luigi Canina | MicroStation | MicroStation | Irregular tessellations | Irregular tessellations | Patio de los Evangelistas | Patio de los Evangelistas | Composición Arquitectónica | Composición Arquitectónica | Sabil | Sabil | Modelling | Modelling | quadric surface | quadric surface | Mesh | Mesh | Panteón | Panteón | Monasterio de El Escorial | Monasterio de El Escorial | Superficie | Superficie | Tunnel vault | Tunnel vault | Vegaviana | Vegaviana | Iglesia Santos Apóstoles | Iglesia Santos Apóstoles | Proyectos Arquitectónicos | Proyectos Arquitectónicos | Parabólicos | Parabólicos | Geometry | Geometry | Carmen Garcia Reig | Carmen Garcia Reig | Expression | Expression | Cuba hiperbólica | Cuba hiperbólica | Red espacial | Red espacial | Geometría | Geometría | skeletal polyhedra | skeletal polyhedra | Bóveda de rincón de claustro | Bóveda de rincón de claustro | Sólido | Sólido | Poliedros platónicos | Poliedros platónicos | Hiperbólicos | Hiperbólicos | Perspective | Perspective | Mimbar | Mimbar | Fedala | Fedala | Furniture | Furniture | Polygon | Polygon | Hyperbolic | Hyperbolic | Bóveda de arista | Bóveda de arista | Revolución | Revolución | Cúpula | Cúpula | Bóveda de cañón | Bóveda de cañón | Estructura | Estructura | Expresión | Expresión | Computer aided design | Computer aided design | Informática | Informática | Hollow faced polyhedra | Hollow faced polyhedra | Flexible | Flexible | Geometric | Geometric | CAD | CAD | Formas | Formas | Bóveda de crucería | Bóveda de crucería | Infografía | Infografía | Polyhedra | Polyhedra | Groin vault | Groin vault | Plane | Plane | Architectural | Architectural | Plano | Plano | Structure | Structure | Architectural drawing | Architectural drawing | Arquitectónica | Arquitectónica | Barrel vault | Barrel vault | Arabesque | Arabesque | Sombra | Sombra | Utzon | Utzon | Escher | Escher | Mueble | Mueble | Vault | Vault | Annular vault | Annular vault | Egipto | Egipto | Polígono | Polígono | Archimedean solids | Archimedean solids | Poliedros arquimedianos | Poliedros arquimedianos | Egypt | Egypt | Paraboloid | Paraboloid | Module | Module | Extrude | Extrude | Boolean | Boolean | Tuscan Order | Tuscan Order | Hyperboloid | Hyperboloid | Poliedros vacuus | Poliedros vacuus

License

Copyright 2009, by the Contributing Authors http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.upm.es/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.62 Physical Chemistry II (MIT) 5.62 Physical Chemistry II (MIT)

Description

This subject deals primarily with elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics.AcknowledgementsThe lecture note materials for this course include contributions from Professor Sylvia T. Ceyer. The Staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Chemistry Department affiliated with course #5.62. Since the following works have evolved over a period of many years, no single source can be attributed. This subject deals primarily with elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics.AcknowledgementsThe lecture note materials for this course include contributions from Professor Sylvia T. Ceyer. The Staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Chemistry Department affiliated with course #5.62. Since the following works have evolved over a period of many years, no single source can be attributed.

Subjects

physical chemistry | physical chemistry | partition functions | partition functions | atomic degrees of freedom | atomic degrees of freedom | molecular degrees of freedom | molecular degrees of freedom | chemical equilibrium | chemical equilibrium | thermodynamics | thermodynamics | intermolecular potentials | intermolecular potentials | equations of state | equations of state | solid state chemistry | solid state chemistry | einstein and debye solids | einstein and debye solids | kinetic theory | kinetic theory | rate theory | rate theory | chemical kinetics | chemical kinetics | transition state theory | transition state theory | RRKM theory | RRKM theory | collision theory | collision theory | equipartition | equipartition | fermi-dirac statistics | fermi-dirac statistics | boltzmann statistics | boltzmann statistics | bose-einstein statistics | bose-einstein statistics | statistical mechanics | statistical mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.091 Introduction to Solid State Chemistry (MIT) 3.091 Introduction to Solid State Chemistry (MIT)

Description

Basic principles of chemistry and their application to engineering systems. The relationship between electronic structure, chemical bonding, and atomic order. Characterization of atomic arrangements in crystalline and amorphous solids: metals, ceramics, semiconductors, and polymers (including proteins). Topical coverage of organic chemistry, solution chemistry, acid-base equilibria, electrochemistry, biochemistry, chemical kinetics, diffusion, and phase diagrams. Examples from industrial practice (including the environmental impact of chemical processes), from energy generation and storage, e.g., batteries and fuel cells, and from emerging technologies, e.g., photonic and biomedical devices. Basic principles of chemistry and their application to engineering systems. The relationship between electronic structure, chemical bonding, and atomic order. Characterization of atomic arrangements in crystalline and amorphous solids: metals, ceramics, semiconductors, and polymers (including proteins). Topical coverage of organic chemistry, solution chemistry, acid-base equilibria, electrochemistry, biochemistry, chemical kinetics, diffusion, and phase diagrams. Examples from industrial practice (including the environmental impact of chemical processes), from energy generation and storage, e.g., batteries and fuel cells, and from emerging technologies, e.g., photonic and biomedical devices.

Subjects

solid state chemistry | solid state chemistry | electronic structure | electronic structure | chemical bonding | chemical bonding | crystal structure | crystal structure | atomic and molecular arrangements | atomic and molecular arrangements | crystalline and amorphous solids | crystalline and amorphous solids

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.091 Introduction to Solid State Chemistry (MIT)

Description

This course explores the basic principles of chemistry and their application to engineering systems. It deals with the relationship between electronic structure, chemical bonding, and atomic order. It also investigates the characterization of atomic arrangements in crystalline and amorphous solids: metals, ceramics, semiconductors, and polymers (including proteins). Topics covered include organic chemistry, solution chemistry, acid-base equilibria, electrochemistry, biochemistry, chemical kinetics, diffusion, and phase diagrams. Examples are drawn from industrial practice (including the environmental impact of chemical processes), from energy generation and storage, e.g., batteries and fuel cells, and from emerging technologies, e.g., photonic and biomedical devices.

Subjects

solid state chemistry; electronic structure; chemical bonding; crystal structure; atomic and molecular arrangements; crystalline and amorphous solids | solid state chemistry | electronic structure | chemical bonding | crystal structure | atomic and molecular arrangements | crystalline and amorphous solids

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.032 Mechanical Behavior of Materials (MIT) 3.032 Mechanical Behavior of Materials (MIT)

Description

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. Integrated laboratories provide the opportunity to explore these concepts through hands-on experiments including instrumentation of pressure vessels, visualization of atomistic deformation in bubble rafts, nanoindentation, and uniaxial mechanical testing, as well as writing assignments to communicate th Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. Integrated laboratories provide the opportunity to explore these concepts through hands-on experiments including instrumentation of pressure vessels, visualization of atomistic deformation in bubble rafts, nanoindentation, and uniaxial mechanical testing, as well as writing assignments to communicate th

Subjects

Basic concepts of solid mechanics and mechanical behavior of materials | Basic concepts of solid mechanics and mechanical behavior of materials | stress-strain relationships | stress-strain relationships | stress transformation | stress transformation | elasticity | elasticity | plasticity and fracture. Case studies include materials selection for bicycle frames | plasticity and fracture. Case studies include materials selection for bicycle frames | stress shielding in biomedical implants; residual stresses in thin films; and ancient materials. Lab experiments and demonstrations give hands-on experience of the physical concepts at a variety of length scales. Use of facilities for measuring mechanical properties including standard mechanical tests | stress shielding in biomedical implants; residual stresses in thin films; and ancient materials. Lab experiments and demonstrations give hands-on experience of the physical concepts at a variety of length scales. Use of facilities for measuring mechanical properties including standard mechanical tests | bubble raft models | bubble raft models | atomic force microscopy and nanoindentation. | atomic force microscopy and nanoindentation. | plasticity and fracture | plasticity and fracture | Case studies | Case studies | materials selection | materials selection | bicycle frames | bicycle frames | stress shielding in biomedical implants | stress shielding in biomedical implants | residual stresses in thin films | residual stresses in thin films | ancient materials | ancient materials | standard mechanical tests | standard mechanical tests | solid mechanics | solid mechanics | mechanical behavior of materials | mechanical behavior of materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.62 Physical Chemistry II (MIT) 5.62 Physical Chemistry II (MIT)

Description

This course covers elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics. Acknowledgements The staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Chemistry Department affiliated with course #5.62. Since the following works have evolved over a period of many years, no single source can be attributed. This course covers elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics. Acknowledgements The staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Chemistry Department affiliated with course #5.62. Since the following works have evolved over a period of many years, no single source can be attributed.

Subjects

physical chemistry | physical chemistry | partition functions | partition functions | atomic degrees of freedom | atomic degrees of freedom | molecular degrees of freedom | molecular degrees of freedom | chemical equilibrium | chemical equilibrium | thermodynamics | thermodynamics | intermolecular potentials | intermolecular potentials | equations of state | equations of state | solid state chemistry | solid state chemistry | einstein and debye solids | einstein and debye solids | kinetic theory | kinetic theory | rate theory | rate theory | chemical kinetics | chemical kinetics | transition state theory | transition state theory | RRKM theory | RRKM theory | collision theory | collision theory | equipartition | equipartition | fermi-dirac statistics | fermi-dirac statistics | boltzmann statistics | boltzmann statistics | bose-einstein statistics | bose-einstein statistics | statistical mechanics | statistical mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.044 Materials Processing (MIT) 3.044 Materials Processing (MIT)

Description

This course is focused on physical understanding of materials processing, and the scaling laws that govern process speed, volume, and material quality. In particular, this course will cover the transport of heat and matter as these topics apply to materials processing. This course is focused on physical understanding of materials processing, and the scaling laws that govern process speed, volume, and material quality. In particular, this course will cover the transport of heat and matter as these topics apply to materials processing.

Subjects

materials processing | materials processing | heat conduction | heat conduction | heat transfer | heat transfer | Biot number | Biot number | glass fibers | glass fibers | thermal spray | thermal spray | 2D analysis | 2D analysis | friction welding | friction welding | radiation | radiation | black bodies | black bodies | emessivity | emessivity | solidification | solidification | sand casting | sand casting | lost foam | lost foam | molds | molds | binary solidification | binary solidification | microstructures | microstructures | fluid flow | fluid flow | glass production | glass production | Pilkington glass | Pilkington glass | drag force | drag force | Newtonian | Newtonian | non-Newtonian | non-Newtonian | blow molding | blow molding | compressive forming | compressive forming | powder | powder | sintering | sintering | slurry | slurry | and colloid processing | and colloid processing | steel making | steel making | electronics manufacturing | electronics manufacturing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

AL237-040 B-24D 42-40348 90th BG 400th BS -Twin Nifties-

Description

Subjects

airplane | aircraft | aviation | bomber | liberator | b24 | noseart | militaryaviation | b24d | jollyrogers | b24liberator | consolidatedb24liberator | consolidatedb24 | consolidatedaircraft | consolidatedliberator | 90thbombgroup | twinniftys

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata