Searching for space-time : 8 results found | RSS Feed for this search

8.20 Introduction to Special Relativity (MIT) 8.20 Introduction to Special Relativity (MIT)

Description

This course introduces the basic ideas and equations of Einstein's Special Theory of Relativity. If you have hoped to understand the physics of Lorentz contraction, time dilation, the "twin paradox", and E=mc2, you're in the right place.AcknowledgementsProf. Knuteson wishes to acknowledge that this course was originally designed and taught by Prof. Robert Jaffe. This course introduces the basic ideas and equations of Einstein's Special Theory of Relativity. If you have hoped to understand the physics of Lorentz contraction, time dilation, the "twin paradox", and E=mc2, you're in the right place.AcknowledgementsProf. Knuteson wishes to acknowledge that this course was originally designed and taught by Prof. Robert Jaffe.

Subjects

Einstein's Special Theory of Relativity | Einstein's Special Theory of Relativity | Lorentz transformations | Lorentz transformations | length contraction | length contraction | time dilation | time dilation | four vectors | four vectors | Lorentz invariants | Lorentz invariants | relativistic energy and momentum | relativistic energy and momentum | relativistic kinematics | relativistic kinematics | Doppler shift | Doppler shift | space-time diagrams | space-time diagrams | relativity paradoxes | relativity paradoxes | General Relativity | General Relativity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01 Physics I (MIT) 8.01 Physics I (MIT)

Description

Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics. Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics.

Subjects

classical mechanics | classical mechanics | Space and time | Space and time | straight-line kinematics | straight-line kinematics | motion in a plane | motion in a plane | experimental basis of Newton's laws | experimental basis of Newton's laws | particle dynamics | particle dynamics | universal gravitation | universal gravitation | collisions and conservation laws | collisions and conservation laws | work and potential energy | work and potential energy | vibrational motion | vibrational motion | conservative forces | conservative forces | central force motions | central force motions | inertial forces and non-inertial frames | inertial forces and non-inertial frames | rigid bodies and rotational dynamics | rigid bodies and rotational dynamics | forces and equilibrium | forces and equilibrium | space | space | time | time | space-time | space-time | planar motion | planar motion | forces | forces | equilibrium | equilibrium | Newton?s laws | Newton?s laws | collisions | collisions | conservation laws | conservation laws | work | work | potential energy | potential energy | inertial forces | inertial forces | non-inertial forces | non-inertial forces | rigid bodies | rigid bodies | rotational dynamics | rotational dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.20 Introduction to Special Relativity (MIT) 8.20 Introduction to Special Relativity (MIT)

Description

Introduces the basic ideas and equations of Einstein's Special Theory of Relativity. Topics include: Lorentz transformations, length contraction and time dilation, four vectors, Lorentz invariants, relativistic energy and momentum, relativistic kinematics, Doppler shift, space-time diagrams, relativity paradoxes, and some concepts of General Relativity. Introduces the basic ideas and equations of Einstein's Special Theory of Relativity. Topics include: Lorentz transformations, length contraction and time dilation, four vectors, Lorentz invariants, relativistic energy and momentum, relativistic kinematics, Doppler shift, space-time diagrams, relativity paradoxes, and some concepts of General Relativity.

Subjects

Einstein's Special Theory of Relativity | Einstein's Special Theory of Relativity | Lorentz transformations | Lorentz transformations | length contraction | length contraction | ime dilation | ime dilation | time dilation | time dilation | four vectors | four vectors | Lorentz invariants | Lorentz invariants | relativistic energy and momentum | relativistic energy and momentum | relativistic kinematics | relativistic kinematics | Doppler shift | Doppler shift | space-time diagrams | space-time diagrams | relativity paradoxes | relativity paradoxes | General Relativity | General Relativity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.20 Introduction to Special Relativity (MIT)

Description

Introduces the basic ideas and equations of Einstein's Special Theory of Relativity. Topics include: Lorentz transformations, length contraction and time dilation, four vectors, Lorentz invariants, relativistic energy and momentum, relativistic kinematics, Doppler shift, space-time diagrams, relativity paradoxes, and some concepts of General Relativity.

Subjects

Einstein's Special Theory of Relativity | Lorentz transformations | length contraction | ime dilation | time dilation | four vectors | Lorentz invariants | relativistic energy and momentum | relativistic kinematics | Doppler shift | space-time diagrams | relativity paradoxes | General Relativity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01 Physics I (MIT)

Description

Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics.

Subjects

classical mechanics | Space and time | straight-line kinematics | motion in a plane | experimental basis of Newton's laws | particle dynamics | universal gravitation | collisions and conservation laws | work and potential energy | vibrational motion | conservative forces | central force motions | inertial forces and non-inertial frames | rigid bodies and rotational dynamics | forces and equilibrium | space | time | space-time | planar motion | forces | equilibrium | Newton?s laws | collisions | conservation laws | work | potential energy | inertial forces | non-inertial forces | rigid bodies | rotational dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01 Physics I (MIT)

Description

Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics.

Subjects

classical mechanics | Space and time | straight-line kinematics | motion in a plane | experimental basis of Newton's laws | particle dynamics | universal gravitation | collisions and conservation laws | work and potential energy | vibrational motion | conservative forces | central force motions | inertial forces and non-inertial frames | rigid bodies and rotational dynamics | forces and equilibrium | space | time | space-time | planar motion | forces | equilibrium | Newton?s laws | collisions | conservation laws | work | potential energy | inertial forces | non-inertial forces | rigid bodies | rotational dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.20 Introduction to Special Relativity (MIT)

Description

This course introduces the basic ideas and equations of Einstein's Special Theory of Relativity. If you have hoped to understand the physics of Lorentz contraction, time dilation, the "twin paradox", and E=mc2, you're in the right place.AcknowledgementsProf. Knuteson wishes to acknowledge that this course was originally designed and taught by Prof. Robert Jaffe.

Subjects

Einstein's Special Theory of Relativity | Lorentz transformations | length contraction | time dilation | four vectors | Lorentz invariants | relativistic energy and momentum | relativistic kinematics | Doppler shift | space-time diagrams | relativity paradoxes | General Relativity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01 Physics I (MIT)

Description

Physics I is a first-year physics course which introduces students to classical mechanics. Topics include: space and time; straight-line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics.

Subjects

classical mechanics | Space and time | straight-line kinematics | motion in a plane | experimental basis of Newton's laws | particle dynamics | universal gravitation | collisions and conservation laws | work and potential energy | vibrational motion | conservative forces | central force motions | inertial forces and non-inertial frames | rigid bodies and rotational dynamics | forces and equilibrium | space | time | space-time | planar motion | forces | equilibrium | Newton?s laws | collisions | conservation laws | work | potential energy | inertial forces | non-inertial forces | rigid bodies | rotational dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata