Searching for speed : 81 results found | RSS Feed for this search

1 2 3

6.976 High Speed Communication Circuits and Systems (MIT) 6.976 High Speed Communication Circuits and Systems (MIT)

Description

6.976 covers circuit and system level design issues of high speed communication systems, with primary focus being placed on wireless and broadband data link applications. Specific circuit topics include transmission lines, high speed and low noise amplifiers, VCO's, and high speed digital circuits. Specific system topics include frequency synthesizers, clock and data recovery circuits, and GMSK transceivers. In addition to learning analysis skills for the above items, students will gain a significant amount of experience in simulating circuits in SPICE and systems in CppSim (a custom C++ simulator). 6.976 covers circuit and system level design issues of high speed communication systems, with primary focus being placed on wireless and broadband data link applications. Specific circuit topics include transmission lines, high speed and low noise amplifiers, VCO's, and high speed digital circuits. Specific system topics include frequency synthesizers, clock and data recovery circuits, and GMSK transceivers. In addition to learning analysis skills for the above items, students will gain a significant amount of experience in simulating circuits in SPICE and systems in CppSim (a custom C++ simulator).

Subjects

high speed communication circuits | high speed communication circuits | high speed communication systems | high speed communication systems | communication | communication | circuit | circuit | wireless | wireless | broadband | broadband | data link | data link | transistor level design | transistor level design | high speed amplifiers | high speed amplifiers | mixers | mixers | VCO's | VCO's | registers | registers | gates | gates | phase locked loops | phase locked loops | transmission line effects | transmission line effects | circuit design | circuit design | narrowband | narrowband | behavioral level simulation techniques | behavioral level simulation techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

PE.730 Archery (MIT) PE.730 Archery (MIT)

Description

Includes audio/video content: AV special element video. This 12 session course is designed for the beginning or novice archer and uses recurve indoor target bows and equipment. The purpose of the course is to introduce students to the basic techniques of indoor target archery emphasizing the care and use of equipment, range safety, stance and shooting techniques, scoring and competition. Includes audio/video content: AV special element video. This 12 session course is designed for the beginning or novice archer and uses recurve indoor target bows and equipment. The purpose of the course is to introduce students to the basic techniques of indoor target archery emphasizing the care and use of equipment, range safety, stance and shooting techniques, scoring and competition.

Subjects

archery | archery | bow | bow | arrow | arrow | stringing | stringing | tourney | tourney | technique | technique | release | release | aim | aim | firing | firing | grouping | grouping | clusters | clusters | safety | safety | stretching | stretching | video | video | high speed video | high speed video | stance | stance | sighting | sighting | speed shooting | speed shooting | balance | balance | musculature | musculature | tournaments | tournaments | distance | distance | accuracy | accuracy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.976 High Speed Communication Circuits and Systems (MIT)

Description

6.976 covers circuit and system level design issues of high speed communication systems, with primary focus being placed on wireless and broadband data link applications. Specific circuit topics include transmission lines, high speed and low noise amplifiers, VCO's, and high speed digital circuits. Specific system topics include frequency synthesizers, clock and data recovery circuits, and GMSK transceivers. In addition to learning analysis skills for the above items, students will gain a significant amount of experience in simulating circuits in SPICE and systems in CppSim (a custom C++ simulator).

Subjects

high speed communication circuits | high speed communication systems | communication | circuit | wireless | broadband | data link | transistor level design | high speed amplifiers | mixers | VCO's | registers | gates | phase locked loops | transmission line effects | circuit design | narrowband | behavioral level simulation techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

MAS.963 Special Topics: Computational Camera and Photography (MIT) MAS.963 Special Topics: Computational Camera and Photography (MIT)

Description

A computational camera attempts to digitally capture the essence of visual information by exploiting the synergistic combination of task-specific optics, illumination, sensors and processing. In this course we will study this emerging multi-disciplinary field at the intersection of signal processing, applied optics, computer graphics and vision, electronics, art, and online sharing through social networks. If novel cameras can be designed to sample light in radically new ways, then rich and useful forms of visual information may be recorded — beyond those present in traditional photographs. Furthermore, if computational process can be made aware of these novel imaging models, them the scene can be analyzed in higher dimensions and novel aesthetic renderings of the visual information A computational camera attempts to digitally capture the essence of visual information by exploiting the synergistic combination of task-specific optics, illumination, sensors and processing. In this course we will study this emerging multi-disciplinary field at the intersection of signal processing, applied optics, computer graphics and vision, electronics, art, and online sharing through social networks. If novel cameras can be designed to sample light in radically new ways, then rich and useful forms of visual information may be recorded — beyond those present in traditional photographs. Furthermore, if computational process can be made aware of these novel imaging models, them the scene can be analyzed in higher dimensions and novel aesthetic renderings of the visual information

Subjects

signal processing; applied optics; Computer graphics; computer vision; online photo; digital photography; digital imaging; visual art image processing | signal processing; applied optics; Computer graphics; computer vision; online photo; digital photography; digital imaging; visual art image processing | image sensor | image sensor | image reconstruction | image reconstruction | medical imaging | medical imaging | mblog | mblog | biomimetics | biomimetics | lens | lens | spectrum | spectrum | multi-spectral | multi-spectral | 3D imaging | 3D imaging | thermal imaging | thermal imaging | high-speed imaging | high-speed imaging | polarization | polarization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.301 Solid-State Circuits (MIT) 6.301 Solid-State Circuits (MIT)

Description

This course covers analog circuit analysis and design, focusing on the tools and methods necessary for the creative design of useful circuits using active devices. The class stresses insight and intuition, applied to the design of transistor circuits and the estimation of their performance. The course concentrates on circuits using the bipolar junction transistor, but the techniques that are studied can be equally applied to circuits using JFETs, MOSFETs, MESFETs, future exotic devices, or even vacuum tubes. This course covers analog circuit analysis and design, focusing on the tools and methods necessary for the creative design of useful circuits using active devices. The class stresses insight and intuition, applied to the design of transistor circuits and the estimation of their performance. The course concentrates on circuits using the bipolar junction transistor, but the techniques that are studied can be equally applied to circuits using JFETs, MOSFETs, MESFETs, future exotic devices, or even vacuum tubes.

Subjects

solid state circuits | solid state circuits | analog | analog | circuit | circuit | transistor | transistor | bipolar junction transistor | bipolar junction transistor | JFET | JFET | MOSFET | MOSFET | MESFET | MESFET | vacuum tubes | vacuum tubes | single-transistor common-emitter amplifier | single-transistor common-emitter amplifier | op amps | op amps | multipliers | multipliers | references | references | high speed logic | high speed logic | high-frequency analysis | high-frequency analysis | open-circuit time constants | open-circuit time constants | transimpedance amps | transimpedance amps | translinear circuits | translinear circuits | bandgap references | bandgap references | charge control model | charge control model

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.769 Operations Strategy (MIT) 15.769 Operations Strategy (MIT)

Description

The class provides a unifying framework for analyzing strategic issues in manufacturing and service operations. Relationships between manufacturing and service companies and their suppliers, customers, and competitors are analyzed. The material also covers decisions in technology, facilities, vertical integration, human resources and other strategic areas. Means of competition such as cost, quality, and innovativeness are explored, together with an approach to make operations decisions in the era of outsourcing and globalization. The class provides a unifying framework for analyzing strategic issues in manufacturing and service operations. Relationships between manufacturing and service companies and their suppliers, customers, and competitors are analyzed. The material also covers decisions in technology, facilities, vertical integration, human resources and other strategic areas. Means of competition such as cost, quality, and innovativeness are explored, together with an approach to make operations decisions in the era of outsourcing and globalization.

Subjects

operations | operations | reengineering | reengineering | process design | process design | manufacturing | manufacturing | stragegy | stragegy | supply chain | supply chain | three dimensional concurrent engineering | three dimensional concurrent engineering | charles fine | charles fine | clockspeed | clockspeed | product development | product development

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.033 Relativity (MIT) 8.033 Relativity (MIT)

Description

Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay. Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay.

Subjects

Einstein's postulates | Einstein's postulates | consequences for simultaneity | time dilation | length contraction | clock synchronization | consequences for simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects and paradoxes | relativistic effects and paradoxes | Minkowski diagrams | Minkowski diagrams | invariants and four-vectors | invariants and four-vectors | momentum | energy and mass | momentum | energy and mass | particle collisions | particle collisions | Relativity and electricity | Relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | General Relativity | General Relativity | principle of equivalence | principle of equivalence | the Schwarzchild metric | the Schwarzchild metric | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | gravitational red shift | particle trajectories | particle trajectories | light trajectories | light trajectories | invariants | invariants | four-vectors | four-vectors | momentum | momentum | energy | energy | mass | mass | relativistic effects | relativistic effects | paradoxes | paradoxes | electricity | electricity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Schwarzchild metric | Schwarzchild metric | geodesics | geodesics | Shaprio delay | Shaprio delay | relativistic kinematics | relativistic kinematics | relativistic dynamics | relativistic dynamics | electromagnetism | electromagnetism | hubble expansion | hubble expansion | universe | universe | equivalence principle | equivalence principle | curved space time | curved space time | Ether Theory | Ether Theory | constants | constants | speed of light | speed of light | c | c | graph | graph | pythagorem theorem | pythagorem theorem | triangle | triangle | arrows | arrows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.763 Applied Superconductivity (MIT) 6.763 Applied Superconductivity (MIT)

Description

This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.Technical RequirementsMATLAB® software is required to run the .m files found on this course site.MATLAB® is a trademark of The MathWorks, Inc. This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.Technical RequirementsMATLAB® software is required to run the .m files found on this course site.MATLAB® is a trademark of The MathWorks, Inc.

Subjects

applied superconductivity | applied superconductivity | superconducting electronics | superconducting electronics | electrodynamics of superconductors | electrodynamics of superconductors | London's model | London's model | flux quantization | flux quantization | Josephson Junctions | Josephson Junctions | superconducting quantum devices | superconducting quantum devices | equivalent circuits | equivalent circuits | high-speed superconducting electronics | high-speed superconducting electronics | quantized circuits | quantized circuits | quantum computing | quantum computing | type II superconductors | type II superconductors | critical magnetic fields | critical magnetic fields | pinning | pinning | the critical state model | the critical state model | superconducting materials | superconducting materials | microscopic theory of superconductivity | microscopic theory of superconductivity | Electric conductivity | Electric conductivity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.131B Architectural Design, Level II: Material and Tectonic Transformations: The Herreshoff Museum (MIT) 4.131B Architectural Design, Level II: Material and Tectonic Transformations: The Herreshoff Museum (MIT)

Description

This semester students are asked to transform the Hereshoff Museum in Bristol, Rhode Island, through processes of erasure and addition. Hereshoff Manufacturing was recognized as one of the premier builders of America's Cup racing boats between 1890's and 1930's. The studio, however, is about more than the program. It is about land, water, and wind and the search for expressing materially and tectonically the relationships between these principle conditions. That is, where the land is primarily about stasis (docking, anchoring and referencing our locus), water's fluidity holds the latent promise of movement and freedom. Movement is activated by wind, allowing for negotiating the relationship between water and land. This semester students are asked to transform the Hereshoff Museum in Bristol, Rhode Island, through processes of erasure and addition. Hereshoff Manufacturing was recognized as one of the premier builders of America's Cup racing boats between 1890's and 1930's. The studio, however, is about more than the program. It is about land, water, and wind and the search for expressing materially and tectonically the relationships between these principle conditions. That is, where the land is primarily about stasis (docking, anchoring and referencing our locus), water's fluidity holds the latent promise of movement and freedom. Movement is activated by wind, allowing for negotiating the relationship between water and land.

Subjects

architecture | architecture | design | design | tectonics | tectonics | representation | representation | materials | materials | construction | construction | presentation | presentation | sketching | sketching | metaphor | metaphor | boat building | boat building | shipyard renovation | shipyard renovation | adaptive reuse | adaptive reuse | public and private space | public and private space | visual arts | visual arts | America's Cup | America's Cup | racing | racing | displacement | displacement | lightness | lightness | mass | mass | strength | strength | energy | energy | speed | speed | design studio | design studio | architectural design | architectural design | public space | public space | private space | private space | tectonic language | tectonic language | design process | design process | research | research | reading | reading | representing | representing | testing | testing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.163 Strobe Project Laboratory (MIT) 6.163 Strobe Project Laboratory (MIT)

Description

Includes audio/video content: AV special element video. This is a laboratory experience course with a focus on photography, electronic imaging, and light measurement, much of it at short duration. In addition to teaching these techniques, the course provides students with experience working in a laboratory and teaches good work habits and techniques for approaching laboratory work. A major purpose of 6.163 is to provide students with many opportunities to sharpen their communication skills: oral, written, and visual. Includes audio/video content: AV special element video. This is a laboratory experience course with a focus on photography, electronic imaging, and light measurement, much of it at short duration. In addition to teaching these techniques, the course provides students with experience working in a laboratory and teaches good work habits and techniques for approaching laboratory work. A major purpose of 6.163 is to provide students with many opportunities to sharpen their communication skills: oral, written, and visual.

Subjects

strobe | strobe | edgerton | edgerton | electronic imaging | electronic imaging | light measurement | light measurement | strobe laboratory | strobe laboratory | electronic flash sources | electronic flash sources | measurement | measurement | fundamentals of photography | fundamentals of photography | experiments on application of electronic flash to photography | stroboscopy | motion analysis | and high-speed videography | experiments on application of electronic flash to photography | stroboscopy | motion analysis | and high-speed videography | independent projects | independent projects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01 Physics I: Classical Mechanics (MIT)

Description

8.01 is a first-semester freshman physics class in Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory. In addition to the basic concepts of Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory, a variety of interesting topics are covered in this course: Binary Stars, Neutron Stars, Black Holes, Resonance Phenomena, Musical Instruments, Stellar Collapse, Supernovae, Astronomical observations from very high flying balloons (lecture 35), and you will be allowed a peek into the intriguing Quantum World. Also by Walter Lewin Courses: Electricity and Magnetism (8.02) - with a complete set of 36 video lectures from the Spring of 2002 Vibrations and Waves (8.03) - with a complete set of 23 video lectures from the Fall of 2004 Talks: For The Love Of Physics - Profes

Subjects

units of measurement | powers of ten | dimensional analysis | measurement uncertainty | scaling arguments | velocity | speed | acceleration | acceleration of gravity | vectors | motion | vector product | scalar product | projectiles | projectile trajectory | circular motion | centripetal motion | artifical gravity | force | Newton's Three Laws | eight | weightlessness | tension | friction | frictionless forces | static friction | dot products | cross products | kinematics | springs | pendulum | mechanical energy | kinetic energy | universal gravitation | resistive force | drag force | air drag | viscous terminal velocity | potential energy | heat; energy consumption | heat | energy consumption | collisions | center of mass | momentum | Newton's Cradle | impulse and impact | rocket thrust | rocket velocity | flywheels | inertia | torque | spinning rod | elliptical orbits | Kepler's Laws | Doppler shift | stellar dynamics | sound waves | electromagnets | binary star | black holes | rope tension | elasticity | speed of sound | pressure in fluid | Pascal's Principle | hydrostatic pressure | barometric pressure | submarines | buoyant force | Bernoulli's Equations | Archimede's Principle | floating | baloons | resonance | wind instruments | thermal expansion | shrink fitting | particles and waves | diffraction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.63 Advanced Fluid Dynamics of the Environment (MIT) 1.63 Advanced Fluid Dynamics of the Environment (MIT)

Description

Designed to familiarize students with theories and analytical tools useful for studying research literature, this course is a survey of fluid mechanical problems in the water environment. Because of the inherent nonlinearities in the governing equations, we shall emphasize the art of making analytical approximations not only for facilitating calculations but also for gaining deeper physical insight. The importance of scales will be discussed throughout the course in lectures and homeworks. Mathematical techniques beyond the usual preparation of first-year graduate students will be introduced as a part of the course. Topics vary from year to year. Designed to familiarize students with theories and analytical tools useful for studying research literature, this course is a survey of fluid mechanical problems in the water environment. Because of the inherent nonlinearities in the governing equations, we shall emphasize the art of making analytical approximations not only for facilitating calculations but also for gaining deeper physical insight. The importance of scales will be discussed throughout the course in lectures and homeworks. Mathematical techniques beyond the usual preparation of first-year graduate students will be introduced as a part of the course. Topics vary from year to year.

Subjects

fluid dynamics | fluid dynamics | fluid motion | fluid motion | Cartesian tensor convention | Cartesian tensor convention | scaling | scaling | approximations | approximations | slow flow | slow flow | Stokes flow | Stokes flow | Oseen | Oseen | spreading | spreading | gravity | gravity | stratified fluid | stratified fluid | boundary layer | boundary layer | high speed flow | high speed flow | jets | jets | thermal plume | thermal plume | pure fluids | pure fluids | porous media | porous media | similarity method of solution | similarity method of solution | shear | shear | stratification | stratification | Orr-Sommerfeld | Orr-Sommerfeld | capillary phenomena | capillary phenomena | bubbles | bubbles | drops | drops | Marangoni instability | Marangoni instability | contact lines | contact lines | geophysical fluid dynamics | geophysical fluid dynamics | coastal flows | coastal flows | wind-induced flows | wind-induced flows | coastal upwelling | coastal upwelling | transient boundary layer | transient boundary layer | buoyancy | buoyancy | convection porous media | convection porous media | dispersion | dispersion | hydrodynamic instability | hydrodynamic instability | Kelvin-Helmholtz instability | Kelvin-Helmholtz instability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.088 Introduction to C Memory Management and C++ Object-Oriented Programming (MIT) 6.088 Introduction to C Memory Management and C++ Object-Oriented Programming (MIT)

Description

Ever hang your head in shame after your Python program wasn't as fast as your friend's C program? Ever wish you could use objects without having to use Java? Join us for this fun introduction to C and C++! We will take you through a tour that will start with writing simple C programs, go deep into the caves of C memory manipulation, resurface with an introduction to using C++ classes, dive deeper into advanced C++ class use and the C++ Standard Template Libraries. We'll wrap up by teaching you some tricks of the trade that you may need for tech interviews. We see this as a "C/C++ empowerment" course: we want you to come away understanding why you would want to use C over another language (control over memory, probably for performance reasons), why you would want to use C++ ra Ever hang your head in shame after your Python program wasn't as fast as your friend's C program? Ever wish you could use objects without having to use Java? Join us for this fun introduction to C and C++! We will take you through a tour that will start with writing simple C programs, go deep into the caves of C memory manipulation, resurface with an introduction to using C++ classes, dive deeper into advanced C++ class use and the C++ Standard Template Libraries. We'll wrap up by teaching you some tricks of the trade that you may need for tech interviews. We see this as a "C/C++ empowerment" course: we want you to come away understanding why you would want to use C over another language (control over memory, probably for performance reasons), why you would want to use C++ ra

Subjects

C | C | C++ | C++ | programming languages | programming languages | abstraction | abstraction | memory management | memory management | speed | speed | pointers | pointers | structs | structs | memory manipulation | memory manipulation | object oriented programming | object oriented programming | oop | oop | objects | objects | encapsulation | encapsulation | classes | classes | input | input | output | output | inheritance | inheritance | polymorphism | polymorphism | templates | templates | standard library | standard library | binary search tree | binary search tree | arithmetic expression | arithmetic expression | eval | eval | print | print

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.763 Applied Superconductivity (MIT) 6.763 Applied Superconductivity (MIT)

Description

This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity. This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.

Subjects

applied superconductivity | applied superconductivity | superconducting electronics | superconducting electronics | electrodynamics of superconductors | electrodynamics of superconductors | London's model | London's model | flux quantization | flux quantization | Josephson Junctions | Josephson Junctions | superconducting quantum devices | superconducting quantum devices | equivalent circuits | equivalent circuits | high-speed superconducting electronics | high-speed superconducting electronics | quantized circuits | quantized circuits | quantum computing | quantum computing | type II superconductors | type II superconductors | critical magnetic fields | critical magnetic fields | pinning | pinning | the critical state model | the critical state model | superconducting materials | superconducting materials | microscopic theory of superconductivity | microscopic theory of superconductivity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.776 High Speed Communication Circuits (MIT) 6.776 High Speed Communication Circuits (MIT)

Description

6.776 covers circuit level design issues of high speed communication systems, with primary focus being placed on wireless and broadband data link applications. Specific circuit topics include transmission lines, high speed and low noise amplifiers, VCO's, mixers, power amps, high speed digital circuits, and frequency synthesizers. In addition to learning analysis skills for the above items, students will gain a significant amount of experience in simulating RF circuits in SPICE and also building RF circuits within a lab project. 6.776 covers circuit level design issues of high speed communication systems, with primary focus being placed on wireless and broadband data link applications. Specific circuit topics include transmission lines, high speed and low noise amplifiers, VCO's, mixers, power amps, high speed digital circuits, and frequency synthesizers. In addition to learning analysis skills for the above items, students will gain a significant amount of experience in simulating RF circuits in SPICE and also building RF circuits within a lab project.

Subjects

integrated circuit design | integrated circuit design | communication systems | communication systems | wireless | wireless | broadband | broadband | data links | data links | circuit blocks | circuit blocks | communication transceivers | communication transceivers | phase-locked loops | phase-locked loops | PLL | PLL | narrowband | narrowband | low-noise | low-noise | amplifiers | amplifiers | mixers | mixers | voltage-controlled oscillators | voltage-controlled oscillators | power amplifiers | power amplifiers | high speed frequency dividers | high speed frequency dividers | passive component design | passive component design | on-chip inductors | on-chip inductors | capacitors | capacitors | transmission line modeling | transmission line modeling | S-parameters | S-parameters | Smith Chart | Smith Chart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.856J Randomized Algorithms (MIT) 6.856J Randomized Algorithms (MIT)

Description

This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms. This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms.

Subjects

Randomized Algorithms | Randomized Algorithms | algorithms | algorithms | efficient in time and space | efficient in time and space | randomization | randomization | computational problems | computational problems | data structures | data structures | graph algorithms | graph algorithms | optimization | optimization | geometry | geometry | Markov chains | Markov chains | sampling | sampling | estimation | estimation | geometric algorithms | geometric algorithms | parallel and distributed algorithms | parallel and distributed algorithms | parallel and ditributed algorithm | parallel and ditributed algorithm | parallel and distributed algorithm | parallel and distributed algorithm | random sampling | random sampling | random selection of witnesses | random selection of witnesses | symmetry breaking | symmetry breaking | randomized computational models | randomized computational models | hash tables | hash tables | skip lists | skip lists | minimum spanning trees | minimum spanning trees | shortest paths | shortest paths | minimum cuts | minimum cuts | convex hulls | convex hulls | linear programming | linear programming | fixed dimension | fixed dimension | arbitrary dimension | arbitrary dimension | approximate counting | approximate counting | parallel algorithms | parallel algorithms | online algorithms | online algorithms | derandomization techniques | derandomization techniques | probabilistic analysis | probabilistic analysis | computational number theory | computational number theory | simplicity | simplicity | speed | speed | design | design | basic probability theory | basic probability theory | application | application | randomized complexity classes | randomized complexity classes | game-theoretic techniques | game-theoretic techniques | Chebyshev | Chebyshev | moment inequalities | moment inequalities | limited independence | limited independence | coupon collection | coupon collection | occupancy problems | occupancy problems | tail inequalities | tail inequalities | Chernoff bound | Chernoff bound | conditional expectation | conditional expectation | probabilistic method | probabilistic method | random walks | random walks | algebraic techniques | algebraic techniques | probability amplification | probability amplification | sorting | sorting | searching | searching | combinatorial optimization | combinatorial optimization | approximation | approximation | counting problems | counting problems | distributed algorithms | distributed algorithms | 6.856 | 6.856 | 18.416 | 18.416

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.263J Data Communication Networks (MIT) 6.263J Data Communication Networks (MIT)

Description

6.263J / 16.37J focuses on the fundamentals of data communication networks. One goal is to give some insight into the rationale of why networks are structured the way they are today and to understand the issues facing the designers of next-generation data networks. Much of the course focuses on network algorithms and their performance. Students are expected to have a strong mathematical background and an understanding of probability theory. Topics discussed include: layered network architecture, Link Layer protocols, high-speed packet switching, queueing theory, Local Area Networks, and Wide Area Networking issues, including routing and flow control. 6.263J / 16.37J focuses on the fundamentals of data communication networks. One goal is to give some insight into the rationale of why networks are structured the way they are today and to understand the issues facing the designers of next-generation data networks. Much of the course focuses on network algorithms and their performance. Students are expected to have a strong mathematical background and an understanding of probability theory. Topics discussed include: layered network architecture, Link Layer protocols, high-speed packet switching, queueing theory, Local Area Networks, and Wide Area Networking issues, including routing and flow control.

Subjects

data communication networks | data communication networks | architecture | architecture | network performance | network performance | network operation | network operation | next generation data networks | next generation data networks | network algorithms | network algorithms | mathematics | mathematics | probability theory | probability theory | layered network architecture | layered network architecture | Link Layer protocols | Link Layer protocols | high-speed packet switching | high-speed packet switching | queueing theory | queueing theory | Local Area Networks | Local Area Networks | Wide Area Networks | Wide Area Networks | 6.263 | 6.263 | 16.37 | 16.37

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.769 Operations Strategy (MIT) 15.769 Operations Strategy (MIT)

Description

This course will address operations strategy by building on the concepts of: Reengineering and process design developed by Dr. Michael Hammer. Manufacturing strategy as developed in the literature, primarily by people at HBS. Supply chain design and 3-D concurrent engineering literature as developed in Charles Fine’s book, Clockspeed: Winning Industry Control in the Age of Temporary Advantage. Perseus Books, 1999. The concepts there emphasize the necessity of integrating product strategy, manufacturing strategy, and supply chain strategy. As a result, each of these will be touched upon in the course. This course will address operations strategy by building on the concepts of: Reengineering and process design developed by Dr. Michael Hammer. Manufacturing strategy as developed in the literature, primarily by people at HBS. Supply chain design and 3-D concurrent engineering literature as developed in Charles Fine’s book, Clockspeed: Winning Industry Control in the Age of Temporary Advantage. Perseus Books, 1999. The concepts there emphasize the necessity of integrating product strategy, manufacturing strategy, and supply chain strategy. As a result, each of these will be touched upon in the course.

Subjects

operations | operations | reengineering | reengineering | process design | process design | manufacturing | manufacturing | stragegy | stragegy | supply chain | supply chain | three dimensional concurrent engineering | three dimensional concurrent engineering | charles fine | charles fine | clockspeed | clockspeed | product development | product development

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.120 Compressible Flow (MIT) 16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear. The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.

Subjects

compressible fluid dynamics | compressible fluid dynamics | fluid dynamics | fluid dynamics | external flows | external flows | internal flows | internal flows | quasi-on-dimensional | quasi-on-dimensional | quasi-1D | quasi-1D | channel flow | channel flow | multi-dimensional flows | multi-dimensional flows | nozzles | nozzles | diffusers | diffusers | inlets | inlets | loss generation | loss generation | interactions | interactions | aerodynamic shapes | aerodynamic shapes | subsonic | subsonic | supersonic | supersonic | transonic | transonic | hypersonic | hypersonic | shock waves | shock waves | vortices | vortices | disturbance behavior | disturbance behavior | unsteady | unsteady | speed of sound | speed of sound | isentropic flows | isentropic flows | non-isentropic flows | non-isentropic flows | potential flows | potential flows | rotational flows | rotational flows | shaft work | shaft work | heat addition | heat addition | mass addition | mass addition | flow states | flow states | flow regime | flow regime | velocity non-uniformities | velocity non-uniformities | density non-uniformities | density non-uniformities | fluid system components | fluid system components | lift | lift | drag | drag | continuum flow | continuum flow | shock strength | shock strength | characteristics | characteristics | governing equations | governing equations | thermodynamic context | thermodynamic context | characteristic parameters | characteristic parameters | quasi-one-dimensional flow | quasi-one-dimensional flow | disturbances | disturbances | unsteady flow | unsteady flow | gas dynamic discontinuities | gas dynamic discontinuities | detonations | detonations | linear two-dimensional flows | linear two-dimensional flows | non-linear two-dimensional flows | non-linear two-dimensional flows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.01 Physics I: Classical Mechanics (MIT)

Description

8.01 is a first-semester freshman physics class in Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory. In addition to the basic concepts of Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory, a variety of interesting topics are covered in this course: Binary Stars, Neutron Stars, Black Holes, Resonance Phenomena, Musical Instruments, Stellar Collapse, Supernovae, Astronomical observations from very high flying balloons (lecture 35), and you will be allowed a peek into the intriguing Quantum World. Also by Walter Lewin Courses: Electricity and Magnetism (8.02) - with a complete set of 36 video lectures from the Spring of 2002 Vibrations and Waves (8.03) - with a complete set of 23 video lectures from the Fall of 2004 Talks: For The Love Of Physics - Profes

Subjects

units of measurement | powers of ten | dimensional analysis | measurement uncertainty | scaling arguments | velocity | speed | acceleration | acceleration of gravity | vectors | motion | vector product | scalar product | projectiles | projectile trajectory | circular motion | centripetal motion | artifical gravity | force | Newton's Three Laws | eight | weightlessness | tension | friction | frictionless forces | static friction | dot products | cross products | kinematics | springs | pendulum | mechanical energy | kinetic energy | universal gravitation | resistive force | drag force | air drag | viscous terminal velocity | potential energy | heat; energy consumption | heat | energy consumption | collisions | center of mass | momentum | Newton's Cradle | impulse and impact | rocket thrust | rocket velocity | flywheels | inertia | torque | spinning rod | elliptical orbits | Kepler's Laws | Doppler shift | stellar dynamics | sound waves | electromagnets | binary star | black holes | rope tension | elasticity | speed of sound | pressure in fluid | Pascal's Principle | hydrostatic pressure | barometric pressure | submarines | buoyant force | Bernoulli's Equations | Archimede's Principle | floating | baloons | resonance | wind instruments | thermal expansion | shrink fitting | particles and waves | diffraction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allkoreancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

PE.730 Archery (MIT)

Description

This 12 session course is designed for the beginning or novice archer and uses recurve indoor target bows and equipment. The purpose of the course is to introduce students to the basic techniques of indoor target archery emphasizing the care and use of equipment, range safety, stance and shooting techniques, scoring and competition.

Subjects

archery | bow | arrow | stringing | tourney | technique | release | aim | firing | grouping | clusters | safety | stretching | video | high speed video | stance | sighting | speed shooting | balance | musculature | tournaments | distance | accuracy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

NACA Research Pilot Howard Clifton Lilly NACA Research Pilot Howard Clifton Lilly

Description

Subjects

nasa | nasa | naca | naca | speedofsound | speedofsound | testpilot | testpilot | nasalangleyresearchcenter | nasalangleyresearchcenter | nasadrydenflightresearchcenter | nasadrydenflightresearchcenter | nasaglennresearchcenter | nasaglennresearchcenter | armstrongflightresearchcenter | armstrongflightresearchcenter | howardlilly | howardlilly

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

NACA pilot A. Scott Crossfield next to the D-558-2 after first Mach 2 flight NACA pilot A. Scott Crossfield next to the D-558-2 after first Mach 2 flight

Description

Subjects

nasa | nasa | 1953 | 1953 | aeronautics | aeronautics | naca | naca | speedofsound | speedofsound | scottcrossfield | scottcrossfield | nasadrydenflightresearchcenter | nasadrydenflightresearchcenter | albertscottcrossfield | albertscottcrossfield

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

X-1E Loaded in B-29 Mothership on Ramp X-1E Loaded in B-29 Mothership on Ramp

Description

Subjects

1955 | 1955 | nasa | nasa | boeing | boeing | aeronautics | aeronautics | b29 | b29 | xplane | xplane | soundbarrier | soundbarrier | naca | naca | speedofsound | speedofsound | x1e | x1e | flighttest | flighttest | bellaircraft | bellaircraft | boeingb29 | boeingb29 | nasadrydenflightresearchcenter | nasadrydenflightresearchcenter | experimentalflight | experimentalflight | bellx1e | bellx1e

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

X-1E Loaded in B-29 Mothership on Ramp X-1E Loaded in B-29 Mothership on Ramp

Description

Subjects

armstrong | armstrong | afrc | afrc | nasaarmstrong | nasaarmstrong | bellx1eboeingb29nacahighspeedflightresearchstation | bellx1eboeingb29nacahighspeedflightresearchstation

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata