Searching for static : 363 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Magnetism with an Experimental Focus (MIT) Magnetism with an Experimental Focus (MIT)

Description

This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli. This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.

Subjects

Electromagnetism | Electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | electrostatic potential | electrostatic potential | electrostatic energy | electrostatic energy | electric current | electric current | magnetic field | magnetic field | Ampere's law | Ampere's law | magnetic | magnetic | electric | electric | time-varying fields | time-varying fields | Faraday's law | Faraday's law | induction | induction | circuits | circuits | electromagnetic waves | electromagnetic waves | Maxwell's equations | Maxwell's equations | 8.02 | 8.02

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Readme file for Web Design and Objects

Description

This readme file contains details of links to all the Web Design and Objects module's material held on Jorum and information about the module as well.

Subjects

ukoer | data oriented dynamic design methods article | data oriented dynamic design methods reading material | data oriented dynamic design methods | data oriented dynamic web design method article | data oriented dynamic web design method reading material | data oriented dynamic web design method | design method article | design method lecture | design method reading material | design method | design methods article | design methods lecture | design methods reading material | design methods | dynamic design method article | dynamic design method lecture | dynamic design methods reading material | dynamic design methods | hypermedia design methods reading material | hypermedia design reading material | hypermedia systems reading material | hypertext application types reading material | live projects reading material | modelling framework reading material | object oriented dynamic design methods and consensus | object oriented dynamic web design method lecture | object oriented dynamic web design method reading material | object oriented dynamic web design method | process/event oriented dynamic design methods lecture | process/event oriented dynamic design methods | robustness diagrams reading material | simple web method website | static web method reading material | static web method task guide | static web method website | static web method | static web methods reading material | static web methods task guide | static web methods website | static web methods | structured detail website | structured overview lecture | structured techniques external website | structured techniques lecture | structured techniques reading material | structured techniques | swm analysis website | swm design detail | systems analysis and design practical | systems analysis and design reading material | systems analysis and design task guide | systems analysis and design website | systems analysis and design | systems analysis reading material | systems analysis task guide | uml lecture | uml reading material | web article | web design and objects article | web design and objects external website | web design and objects introduction lecture | web design and objects introduction reading material | web design and objects introduction task guide | web design and objects introduction website | web design and objects introduction | web design and objects lecture | web design and objects reading material | web design and objects task guide | web design and objects website | web design and objects | web design article | web design external website | web design lecture | web design practical | web design reading material | web design task guide | web design website | web design | web engineering reading material | web external website | web lecture | web method reading material | web method task guide | web method website | web method | web methods reading material | web methods task guide | web methods website | web methods | web object article | web object external website | web object lecture | web object practical | web object reading material | web object task guide | web object website | web object | web objects article | web objects external website | web objects lecture | web objects practical | web objects reading material | web objects task guide | web objects website | web objects | web practical | web reading material | web task guide | web website | web | webml lecture | webml reading material | webml website | webratio website | g530 article | g530 external website | g530 lecture | g530 practical | g530 reading material | g530 task guide | g530 website | g530 | web design and objects practical | web modeling language external website | web modeling language lecture | web modeling language reading material | web modeling language | web modelling language external website | web modelling language lecture | web modelling language reading material | web modelling language | webml external website | webml | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.105 Electromagnetic Interactions (MIT) 22.105 Electromagnetic Interactions (MIT)

Description

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker. This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Subjects

electrostatics | electrostatics | coulomb's law | coulomb's law | gauss's law | gauss's law | potentials | potentials | laplace equations | laplace equations | poisson equations | poisson equations | capacitors | capacitors | resistors | resistors | child-langmuir law | child-langmuir law | magnetostatics | magnetostatics | ampere's law | ampere's law | biot-savart law | biot-savart law | magnets | magnets | inductors | inductors | superconducting magnets | superconducting magnets | single particle motion | single particle motion | lorentz force | lorentz force | quasi-statics | quasi-statics | faraday's law | faraday's law | maxwell equations | maxwell equations | plane waves | plane waves | reflection | reflection | refraction | refraction | klystrons | klystrons | gyrotrons | gyrotrons | lienard-wiechert potentials | lienard-wiechert potentials | thomson scattering | thomson scattering | compton scattering | compton scattering | synchrotron radiation | synchrotron radiation | bremsstrahlung radiation | bremsstrahlung radiation | cerenkov radiation | cerenkov radiation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.105 Electromagnetic Interactions (MIT) 22.105 Electromagnetic Interactions (MIT)

Description

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker. This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Subjects

electrostatics | electrostatics | coulomb's law | coulomb's law | gauss's law | gauss's law | potentials | potentials | laplace equations | laplace equations | poisson equations | poisson equations | capacitors | capacitors | resistors | resistors | child-langmuir law | child-langmuir law | magnetostatics | magnetostatics | ampere's law | ampere's law | biot-savart law | biot-savart law | magnets | magnets | inductors | inductors | superconducting magnets | superconducting magnets | single particle motion | single particle motion | lorentz force | lorentz force | quasi-statics | quasi-statics | faraday's law | faraday's law | maxwell equations | maxwell equations | plane waves | plane waves | reflection | reflection | refraction | refraction | klystrons | klystrons | gyrotrons | gyrotrons | lienard-wiechert potentials | lienard-wiechert potentials | thomson scattering | thomson scattering | compton scattering | compton scattering | synchrotron radiation | synchrotron radiation | bremsstrahlung radiation | bremsstrahlung radiation | cerenkov radiation | cerenkov radiation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Physics II: Electricity and Magnetism (MIT) 8.02 Physics II: Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Staff List Visualizations: Prof. John Belcher Instructors: Dr. Peter Dourmashkin Prof. Bruce Knuteson Prof. Gunther Roland Prof. Bolek Wyslouch Dr. Brian Wecht Prof. Eric Katsavounidis Prof. Robert Simcoe Prof. Joseph Formaggio Course Co-Administrators: Dr. Peter Dourmashkin Prof. Robert Redwine Technical Instructors: Andy Neely Matthew Strafuss Course This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Staff List Visualizations: Prof. John Belcher Instructors: Dr. Peter Dourmashkin Prof. Bruce Knuteson Prof. Gunther Roland Prof. Bolek Wyslouch Dr. Brian Wecht Prof. Eric Katsavounidis Prof. Robert Simcoe Prof. Joseph Formaggio Course Co-Administrators: Dr. Peter Dourmashkin Prof. Robert Redwine Technical Instructors: Andy Neely Matthew Strafuss Course

Subjects

electromagnetism | electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | potential | potential | electrostatic energy | electrostatic energy | Electric currents | Electric currents | magnetic fields | magnetic fields | Ampere's law | Ampere's law | Magnetic materials | Magnetic materials | Time-varying fields | Time-varying fields | Faraday's law of induction | Faraday's law of induction | electric circuits | electric circuits | Electromagnetic waves | Electromagnetic waves | Maxwell's equations | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02T Electricity and Magnetism (MIT) 8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, a This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, a

Subjects

electromagnetism | electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | potential | potential | electrostatic energy | electrostatic energy | Electric currents | Electric currents | magnetic fields | magnetic fields | Ampere's law | Ampere's law | Magnetic materials | Magnetic materials | Time-varying fields | Time-varying fields | Faraday's law of induction | Faraday's law of induction | electric circuits | electric circuits | Electromagnetic waves | Electromagnetic waves | Maxwell's equations | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT) 6.013 Electromagnetics and Applications (MIT)

Description

Includes audio/video content: AV special element video. This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy. Includes audio/video content: AV special element video. This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy.

Subjects

electromagnetics | electromagnetics | electromagnetic fields | electromagnetic fields | electrodynamics | electrodynamics | devices and circuits | devices and circuits | static and quasistatic fields | static and quasistatic fields | electromagnetic forces | electromagnetic forces | actuators | actuators | sensors | sensors | TEM lines | TEM lines | electromagnetic waves | electromagnetic waves | antennas | antennas | radiation | radiation | optical communications | optical communications | acoustics | acoustics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.642 Continuum Electromechanics (MIT) 6.642 Continuum Electromechanics (MIT)

Description

Includes audio/video content: AV faculty introductions. This course focuses on laws, approximations and relations of continuum electromechanics. Topics include mechanical and electromechanical transfer relations, statics and dynamics of electromechanical systems having a static equilibrium, electromechanical flows, and field coupling with thermal and molecular diffusion. Also covered are electrokinetics, streaming interactions, application to materials processing, magnetohydrodynamic and electrohydrodynamic pumps and generators, ferrohydrodynamics, physiochemical systems, heat transfer, continuum feedback control, electron beam devices, and plasma dynamics. Acknowledgements The instructor would like to thank Xuancheng Shao and Anyang Hou for transcribing into LaTeX the problem set solution Includes audio/video content: AV faculty introductions. This course focuses on laws, approximations and relations of continuum electromechanics. Topics include mechanical and electromechanical transfer relations, statics and dynamics of electromechanical systems having a static equilibrium, electromechanical flows, and field coupling with thermal and molecular diffusion. Also covered are electrokinetics, streaming interactions, application to materials processing, magnetohydrodynamic and electrohydrodynamic pumps and generators, ferrohydrodynamics, physiochemical systems, heat transfer, continuum feedback control, electron beam devices, and plasma dynamics. Acknowledgements The instructor would like to thank Xuancheng Shao and Anyang Hou for transcribing into LaTeX the problem set solution

Subjects

continuum mechanics | continuum mechanics | electromechanics | electromechanics | mechanical and electromechanical transfer relations | mechanical and electromechanical transfer relations | statics | statics | dynamics | dynamics | electromechanical systems | electromechanical systems | static equililbrium | static equililbrium | electromechanical flows | electromechanical flows | field coupling | field coupling | thermal and molecular diffusion | thermal and molecular diffusion | electrokinetics | electrokinetics | streaming interactions | streaming interactions | materials processing | materials processing | magnetohydrodynamic and electrohydrodynamic pumps and generators | magnetohydrodynamic and electrohydrodynamic pumps and generators | ferrohydrodynamics | ferrohydrodynamics | physiochemical systems | physiochemical systems | heat transfer | heat transfer | continuum feedback control | continuum feedback control | electron beam devices | electron beam devices | plasma dynamics | plasma dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.094 Finite Element Analysis of Solids and Fluids (MIT) 2.094 Finite Element Analysis of Solids and Fluids (MIT)

Description

This course presents finite element theory and methods for general linear and nonlinear analyses. Reliable and effective finite element procedures are discussed with their applications to the solution of general problems in solid, structural, and fluid mechanics, heat and mass transfer, and fluid-structure interactions. The governing continuum mechanics equations, conservation laws, virtual work, and variational principles are used to establish effective finite element discretizations and the stability, accuracy, and convergence are discussed. The homework and the student-selected term project using the general-purpose finite element analysis program ADINA are important parts of the course. This course presents finite element theory and methods for general linear and nonlinear analyses. Reliable and effective finite element procedures are discussed with their applications to the solution of general problems in solid, structural, and fluid mechanics, heat and mass transfer, and fluid-structure interactions. The governing continuum mechanics equations, conservation laws, virtual work, and variational principles are used to establish effective finite element discretizations and the stability, accuracy, and convergence are discussed. The homework and the student-selected term project using the general-purpose finite element analysis program ADINA are important parts of the course.

Subjects

linear static analysis | linear static analysis | solids | solids | structures | structures | nonlinear static analysis | nonlinear static analysis | heat transfer | heat transfer | fluid flows | fluid flows | finite element methods | finite element methods | ADINA | ADINA | student work | student work | beams | beams | plates | plates | shells | shells | displacement | displacement | conduction | conduction | convection | convection | radiation | radiation | Navier-Stokes | Navier-Stokes | incompressible fluids | incompressible fluids | acoustic fluids | acoustic fluids

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Atmosphere, Ocean and Climate Dynamics (MIT) 12.003 Atmosphere, Ocean and Climate Dynamics (MIT)

Description

Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall. Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.07 Electromagnetism II (MIT) 8.07 Electromagnetism II (MIT)

Description

Survey of basic electromagnetic phenomena: electrostatics, magnetostatics, electromagnetic properties of matter. Time-dependent electromagnetic fields and Maxwell's equations. Electromagnetic waves, emission, absorption, and scattering of radiation. Relativistic electrodynamics and mechanics. Survey of basic electromagnetic phenomena: electrostatics, magnetostatics, electromagnetic properties of matter. Time-dependent electromagnetic fields and Maxwell's equations. Electromagnetic waves, emission, absorption, and scattering of radiation. Relativistic electrodynamics and mechanics.

Subjects

electromagnetic phenomena | electromagnetic phenomena | electrostatics | electrostatics | magnetostatics | magnetostatics | electromagnetic properties of matter | electromagnetic properties of matter | Time-dependent electromagnetic fields and Maxwell's equations | Time-dependent electromagnetic fields and Maxwell's equations | Electromagnetic waves | Electromagnetic waves | emission | emission | absorption | absorption | scattering of radiation | scattering of radiation | Relativistic electrodynamics | Relativistic electrodynamics | mechanics | mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.45 Magnetic Materials (MIT) 3.45 Magnetic Materials (MIT)

Description

This course will cover the following topics: Magnetostatics Origin of magnetism in materials Magnetic domains and domain walls Magnetic anisotropy Reversible and irreversible magnetization processes Hard and soft magnetic materials Magnetic recording Special topics include magnetism of thin films, surfaces and fine particles; transport in ferromagnets, magnetoresistive sensors, and amorphous magnetic materials. This course will cover the following topics: Magnetostatics Origin of magnetism in materials Magnetic domains and domain walls Magnetic anisotropy Reversible and irreversible magnetization processes Hard and soft magnetic materials Magnetic recording Special topics include magnetism of thin films, surfaces and fine particles; transport in ferromagnets, magnetoresistive sensors, and amorphous magnetic materials.

Subjects

Magnetostatics; magnetism; magnetic domains and domain walls; magnetic anisotropy; reversible and irreversible magnetization; hard and soft magnetic materials; magnetic recording; thin films; ferromagnets | Magnetostatics; magnetism; magnetic domains and domain walls; magnetic anisotropy; reversible and irreversible magnetization; hard and soft magnetic materials; magnetic recording; thin films; ferromagnets | magnetoresistive sensors; amorphous magnetic materials | magnetoresistive sensors; amorphous magnetic materials | Magnetostatics | Magnetostatics | magnetism | magnetism | magnetic domains and domain walls | magnetic domains and domain walls | magnetic anisotropy | magnetic anisotropy | reversible and irreversible magnetization | reversible and irreversible magnetization | hard and soft magnetic materials | hard and soft magnetic materials | magnetic recording | magnetic recording | thin films | thin films | ferromagnets | magnetoresistive sensors | ferromagnets | magnetoresistive sensors | amorphous magnetic materials | amorphous magnetic materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.700 Principles of Naval Architecture (MIT) 2.700 Principles of Naval Architecture (MIT)

Description

This course presents principles of naval architecture, ship geometry, hydrostatics, calculation and drawing of curves of form, intact and damage stability, hull structure strength calculations and ship resistance. It introduces computer-aided naval ship design and analysis tools. Projects include analysis of ship lines drawings, calculation of ship hydrostatic characteristics, analysis of intact and damaged stability, ship model testing, and hull structure strength calculations. This course presents principles of naval architecture, ship geometry, hydrostatics, calculation and drawing of curves of form, intact and damage stability, hull structure strength calculations and ship resistance. It introduces computer-aided naval ship design and analysis tools. Projects include analysis of ship lines drawings, calculation of ship hydrostatic characteristics, analysis of intact and damaged stability, ship model testing, and hull structure strength calculations.

Subjects

naval architecture | naval architecture | ship geometry | ship geometry | geometry of ships | geometry of ships | ship resistance | ship resistance | flow | flow | hydrostatics | hydrostatics | intact stability | intact stability | damage stability | damage stability | general stability | general stability | hull | hull | hydrostatic | hydrostatic | ship model testing | ship model testing | hull structure | hull structure | Resistance | Resistance | Propulsion | Propulsion | Vibration | Vibration | submarine | submarine | hull subdivision | hull subdivision | midsection | midsection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.07 Electromagnetism II (MIT) 8.07 Electromagnetism II (MIT)

Description

This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell's equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics.   This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell's equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics.  

Subjects

electromagnetic phenomena | electromagnetic phenomena | electrostatics | electrostatics | magnetostatics | magnetostatics | electromagnetic fields | electromagnetic fields | electromagnetic waves | electromagnetic waves | emission of radiation | emission of radiation | absorption of radiation | absorption of radiation | scattering of radiation | scattering of radiation | relativistic electrodynamics | relativistic electrodynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.105 Electromagnetic Interactions (MIT) 22.105 Electromagnetic Interactions (MIT)

Description

Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic fields. Charged particle motion in those fields. Particle acceleration and focussing. Collisions with charged particles and with atoms. Electromagnetic waves, wave emission by accelerated particles, Bremsstrahlung. Compton scattering. Photoionization. Elementary applications to ranging, shielding, imaging, and radiation effects. Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic fields. Charged particle motion in those fields. Particle acceleration and focussing. Collisions with charged particles and with atoms. Electromagnetic waves, wave emission by accelerated particles, Bremsstrahlung. Compton scattering. Photoionization. Elementary applications to ranging, shielding, imaging, and radiation effects.

Subjects

electromagnetism | | electromagnetism | | Maxwell's equations | | Maxwell's equations | | electrostatic fields | | electrostatic fields | | magnetostatic fields | | magnetostatic fields | | Charged particle motion | | Charged particle motion | | Particle acceleration | | Particle acceleration | | Electromagnetic waves | | Electromagnetic waves | | Bremsstrahlung | | Bremsstrahlung | | Compton scattering | | Compton scattering | | Photoionization | Photoionization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.642 Continuum Electromechanics (MIT) 6.642 Continuum Electromechanics (MIT)

Description

This course focuses on laws, approximations, and relations of continuum electromechanics. Topics include mechanical and electromechanical transfer relations, statics and dynamics of electromechanical systems having a static equilibrium, electromechanical flows, and field coupling with thermal and molecular diffusion. See the syllabus section for a more detailed list of topics. This course focuses on laws, approximations, and relations of continuum electromechanics. Topics include mechanical and electromechanical transfer relations, statics and dynamics of electromechanical systems having a static equilibrium, electromechanical flows, and field coupling with thermal and molecular diffusion. See the syllabus section for a more detailed list of topics.

Subjects

continuum mechanics | continuum mechanics | electromechanics | electromechanics | mechanical and electromechanical transfer relations | mechanical and electromechanical transfer relations | statics | statics | dynamics | dynamics | electromechanical systems | electromechanical systems | static equililbrium | static equililbrium | electromechanical flows | electromechanical flows | field coupling | field coupling | thermal and molecular diffusion | thermal and molecular diffusion | electrokinetics | electrokinetics | streaming interactions | streaming interactions | materials processing | materials processing | magnetohydrodynamic and electrohydrodynamic pumps and generators | magnetohydrodynamic and electrohydrodynamic pumps and generators | ferrohydrodynamics | ferrohydrodynamics | physiochemical systems | physiochemical systems | heat transfer | heat transfer | continuum feedback control | continuum feedback control | electron beam devices | electron beam devices | plasma dynamics | plasma dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Physics of Atmospheres and Oceans (MIT) 12.003 Physics of Atmospheres and Oceans (MIT)

Description

The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data. The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetism with an Experimental Focus (MIT)

Description

This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.

Subjects

Electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | electrostatic potential | electrostatic energy | electric current | magnetic field | Ampere's law | magnetic | electric | time-varying fields | Faraday's law | induction | circuits | electromagnetic waves | Maxwell's equations | 8.02

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.07 Electromagnetism II (MIT) 8.07 Electromagnetism II (MIT)

Description

This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell's equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics. This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell's equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics.

Subjects

electromagnetic phenomena | electromagnetic phenomena | electrostatics | electrostatics | magnetostatics | magnetostatics | electromagnetic properties of matter | electromagnetic properties of matter | Time-dependent electromagnetic fields | Time-dependent electromagnetic fields | Maxwell's equations | Maxwell's equations | Electromagnetic waves | Electromagnetic waves | emission | emission | absorption | absorption | scattering of radiation | scattering of radiation | Relativistic electrodynamics | Relativistic electrodynamics | mechanics | mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.094 Finite Element Analysis of Solids and Fluids II (MIT) 2.094 Finite Element Analysis of Solids and Fluids II (MIT)

Description

This course presents finite element theory and methods for general linear and nonlinear analyses. Reliable and effective finite element procedures are discussed with their applications to the solution of general problems in solid, structural, and fluid mechanics, heat and mass transfer, and fluid-structure interactions. The governing continuum mechanics equations, conservation laws, virtual work, and variational principles are used to establish effective finite element discretizations and the stability, accuracy, and convergence are discussed. The homework and the student-selected term project using the general-purpose finite element analysis program ADINA are important parts of the course. This course presents finite element theory and methods for general linear and nonlinear analyses. Reliable and effective finite element procedures are discussed with their applications to the solution of general problems in solid, structural, and fluid mechanics, heat and mass transfer, and fluid-structure interactions. The governing continuum mechanics equations, conservation laws, virtual work, and variational principles are used to establish effective finite element discretizations and the stability, accuracy, and convergence are discussed. The homework and the student-selected term project using the general-purpose finite element analysis program ADINA are important parts of the course.

Subjects

linear static analysis | linear static analysis | solids | solids | structures | structures | nonlinear static analysis | nonlinear static analysis | heat transfer | heat transfer | fluid flows | fluid flows | finite element methods | finite element methods | ADINA | ADINA | student work | student work | beams | beams | plates | plates | shells | shells | displacement | displacement | conduction | conduction | convection | convection | radiation | radiation | Navier-Stokes | Navier-Stokes | incompressible fluids | incompressible fluids | acoustic fluids | acoustic fluids

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.050 Solid Mechanics (MIT) 1.050 Solid Mechanics (MIT)

Description

This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.Technical RequirementsJava® Virtual Machine software (automatically installed in most major web browsers) is required to run the .class files found on this course site. Java® plug-in software is required to run the This course introduces students to the fundamental principles and methods of structural mechanics. Topics covered include: static equilibrium, force resultants, support conditions, analysis of determinate planar structures (beams, trusses, frames), stresses and strains in structural elements, states of stress (shear, bending, torsion), statically indeterminate systems, displacements and deformations, introduction to matrix methods, elastic stability, and approximate methods. Design exercises are used to encourage creative student initiative and systems thinking.Technical RequirementsJava® Virtual Machine software (automatically installed in most major web browsers) is required to run the .class files found on this course site. Java® plug-in software is required to run the

Subjects

elastic stability | elastic stability | matrix methods | matrix methods | statically indeterminate systems | statically indeterminate systems | torsion | torsion | bending | bending | shearing | shearing | strains in structural elements | strains in structural elements | stress | stress | beams | beams | frames | frames | determinate planar structures | determinate planar structures | support conditions | support conditions | static equilibrium | static equilibrium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Web Design and Objects - Static Web Methods I

Description

This reading material forms part of the "Static Web Methods I" topic in the Web Design and Objects module.

Subjects

ukoer | static web methods reading material | static web methods | web design and objects | web | web design | web object | web objects | static web method | web method | web methods | web design and objects reading material | web reading material | web design reading material | web object reading material | web objects reading material | static web method reading material | web method reading material | web methods reading material | g530 | g530 reading material | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Web Design and Objects - Static Web Methods I

Description

This reading material forms part of the "Static Web Methods I" topic in the Web Design and Objects module.

Subjects

ukoer | static web methods reading material | static web methods | web design and objects | web | web design | web object | web objects | static web method | web method | web methods | web design and objects reading material | web reading material | web design reading material | web object reading material | web objects reading material | static web method reading material | web method reading material | web methods reading material | g530 | g530 reading material | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata