Searching for statics : 95 results found | RSS Feed for this search

1 2 3 4

22.105 Electromagnetic Interactions (MIT) 22.105 Electromagnetic Interactions (MIT)

Description

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker. This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Subjects

electrostatics | electrostatics | coulomb's law | coulomb's law | gauss's law | gauss's law | potentials | potentials | laplace equations | laplace equations | poisson equations | poisson equations | capacitors | capacitors | resistors | resistors | child-langmuir law | child-langmuir law | magnetostatics | magnetostatics | ampere's law | ampere's law | biot-savart law | biot-savart law | magnets | magnets | inductors | inductors | superconducting magnets | superconducting magnets | single particle motion | single particle motion | lorentz force | lorentz force | quasi-statics | quasi-statics | faraday's law | faraday's law | maxwell equations | maxwell equations | plane waves | plane waves | reflection | reflection | refraction | refraction | klystrons | klystrons | gyrotrons | gyrotrons | lienard-wiechert potentials | lienard-wiechert potentials | thomson scattering | thomson scattering | compton scattering | compton scattering | synchrotron radiation | synchrotron radiation | bremsstrahlung radiation | bremsstrahlung radiation | cerenkov radiation | cerenkov radiation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.105 Electromagnetic Interactions (MIT) 22.105 Electromagnetic Interactions (MIT)

Description

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker. This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Subjects

electrostatics | electrostatics | coulomb's law | coulomb's law | gauss's law | gauss's law | potentials | potentials | laplace equations | laplace equations | poisson equations | poisson equations | capacitors | capacitors | resistors | resistors | child-langmuir law | child-langmuir law | magnetostatics | magnetostatics | ampere's law | ampere's law | biot-savart law | biot-savart law | magnets | magnets | inductors | inductors | superconducting magnets | superconducting magnets | single particle motion | single particle motion | lorentz force | lorentz force | quasi-statics | quasi-statics | faraday's law | faraday's law | maxwell equations | maxwell equations | plane waves | plane waves | reflection | reflection | refraction | refraction | klystrons | klystrons | gyrotrons | gyrotrons | lienard-wiechert potentials | lienard-wiechert potentials | thomson scattering | thomson scattering | compton scattering | compton scattering | synchrotron radiation | synchrotron radiation | bremsstrahlung radiation | bremsstrahlung radiation | cerenkov radiation | cerenkov radiation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.07 Electromagnetism II (MIT) 8.07 Electromagnetism II (MIT)

Description

Survey of basic electromagnetic phenomena: electrostatics, magnetostatics, electromagnetic properties of matter. Time-dependent electromagnetic fields and Maxwell's equations. Electromagnetic waves, emission, absorption, and scattering of radiation. Relativistic electrodynamics and mechanics. Survey of basic electromagnetic phenomena: electrostatics, magnetostatics, electromagnetic properties of matter. Time-dependent electromagnetic fields and Maxwell's equations. Electromagnetic waves, emission, absorption, and scattering of radiation. Relativistic electrodynamics and mechanics.

Subjects

electromagnetic phenomena | electromagnetic phenomena | electrostatics | electrostatics | magnetostatics | magnetostatics | electromagnetic properties of matter | electromagnetic properties of matter | Time-dependent electromagnetic fields and Maxwell's equations | Time-dependent electromagnetic fields and Maxwell's equations | Electromagnetic waves | Electromagnetic waves | emission | emission | absorption | absorption | scattering of radiation | scattering of radiation | Relativistic electrodynamics | Relativistic electrodynamics | mechanics | mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.45 Magnetic Materials (MIT) 3.45 Magnetic Materials (MIT)

Description

This course will cover the following topics: Magnetostatics Origin of magnetism in materials Magnetic domains and domain walls Magnetic anisotropy Reversible and irreversible magnetization processes Hard and soft magnetic materials Magnetic recording Special topics include magnetism of thin films, surfaces and fine particles; transport in ferromagnets, magnetoresistive sensors, and amorphous magnetic materials. This course will cover the following topics: Magnetostatics Origin of magnetism in materials Magnetic domains and domain walls Magnetic anisotropy Reversible and irreversible magnetization processes Hard and soft magnetic materials Magnetic recording Special topics include magnetism of thin films, surfaces and fine particles; transport in ferromagnets, magnetoresistive sensors, and amorphous magnetic materials.

Subjects

Magnetostatics; magnetism; magnetic domains and domain walls; magnetic anisotropy; reversible and irreversible magnetization; hard and soft magnetic materials; magnetic recording; thin films; ferromagnets | Magnetostatics; magnetism; magnetic domains and domain walls; magnetic anisotropy; reversible and irreversible magnetization; hard and soft magnetic materials; magnetic recording; thin films; ferromagnets | magnetoresistive sensors; amorphous magnetic materials | magnetoresistive sensors; amorphous magnetic materials | Magnetostatics | Magnetostatics | magnetism | magnetism | magnetic domains and domain walls | magnetic domains and domain walls | magnetic anisotropy | magnetic anisotropy | reversible and irreversible magnetization | reversible and irreversible magnetization | hard and soft magnetic materials | hard and soft magnetic materials | magnetic recording | magnetic recording | thin films | thin films | ferromagnets | magnetoresistive sensors | ferromagnets | magnetoresistive sensors | amorphous magnetic materials | amorphous magnetic materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.07 Electromagnetism II (MIT) 8.07 Electromagnetism II (MIT)

Description

This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell's equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics.   This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell's equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics.  

Subjects

electromagnetic phenomena | electromagnetic phenomena | electrostatics | electrostatics | magnetostatics | magnetostatics | electromagnetic fields | electromagnetic fields | electromagnetic waves | electromagnetic waves | emission of radiation | emission of radiation | absorption of radiation | absorption of radiation | scattering of radiation | scattering of radiation | relativistic electrodynamics | relativistic electrodynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.07 Electromagnetism II (MIT) 8.07 Electromagnetism II (MIT)

Description

This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell's equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics. This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell's equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics.

Subjects

electromagnetic phenomena | electromagnetic phenomena | electrostatics | electrostatics | magnetostatics | magnetostatics | electromagnetic properties of matter | electromagnetic properties of matter | Time-dependent electromagnetic fields | Time-dependent electromagnetic fields | Maxwell's equations | Maxwell's equations | Electromagnetic waves | Electromagnetic waves | emission | emission | absorption | absorption | scattering of radiation | scattering of radiation | Relativistic electrodynamics | Relativistic electrodynamics | mechanics | mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.105 Electromagnetic Interactions (MIT)

Description

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Subjects

electrostatics | coulomb's law | gauss's law | potentials | laplace equations | poisson equations | capacitors | resistors | child-langmuir law | magnetostatics | ampere's law | biot-savart law | magnets | inductors | superconducting magnets | single particle motion | lorentz force | quasi-statics | faraday's law | maxwell equations | plane waves | reflection | refraction | klystrons | gyrotrons | lienard-wiechert potentials | thomson scattering | compton scattering | synchrotron radiation | bremsstrahlung radiation | cerenkov radiation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.105 Electromagnetic Interactions (MIT)

Description

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Subjects

electrostatics | coulomb's law | gauss's law | potentials | laplace equations | poisson equations | capacitors | resistors | child-langmuir law | magnetostatics | ampere's law | biot-savart law | magnets | inductors | superconducting magnets | single particle motion | lorentz force | quasi-statics | faraday's law | maxwell equations | plane waves | reflection | refraction | klystrons | gyrotrons | lienard-wiechert potentials | thomson scattering | compton scattering | synchrotron radiation | bremsstrahlung radiation | cerenkov radiation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.105 Electromagnetic Interactions (MIT)

Description

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Subjects

electrostatics | coulomb's law | gauss's law | potentials | laplace equations | poisson equations | capacitors | resistors | child-langmuir law | magnetostatics | ampere's law | biot-savart law | magnets | inductors | superconducting magnets | single particle motion | lorentz force | quasi-statics | faraday's law | maxwell equations | plane waves | reflection | refraction | klystrons | gyrotrons | lienard-wiechert potentials | thomson scattering | compton scattering | synchrotron radiation | bremsstrahlung radiation | cerenkov radiation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.105 Electromagnetic Interactions (MIT)

Description

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation. Acknowledgments Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Subjects

electrostatics | coulomb's law | gauss's law | potentials | laplace equations | poisson equations | capacitors | resistors | child-langmuir law | magnetostatics | ampere's law | biot-savart law | magnets | inductors | superconducting magnets | single particle motion | lorentz force | quasi-statics | faraday's law | maxwell equations | plane waves | reflection | refraction | klystrons | gyrotrons | lienard-wiechert potentials | thomson scattering | compton scattering | synchrotron radiation | bremsstrahlung radiation | cerenkov radiation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.123 Microeconomic Theory III (MIT) 14.123 Microeconomic Theory III (MIT)

Description

This half-semester course discusses decision theory and topics in game theory. We present models of individual decision-making under certainty and uncertainty. Topics include preference orderings, expected utility, risk, stochastic dominance, supermodularity, monotone comparative statics, background risk, game theory, rationalizability, iterated strict dominance multi-stage games, sequential equilibrium, trembling-hand perfection, stability, signaling games, theory of auctions, global games, repeated games, and correlation. This half-semester course discusses decision theory and topics in game theory. We present models of individual decision-making under certainty and uncertainty. Topics include preference orderings, expected utility, risk, stochastic dominance, supermodularity, monotone comparative statics, background risk, game theory, rationalizability, iterated strict dominance multi-stage games, sequential equilibrium, trembling-hand perfection, stability, signaling games, theory of auctions, global games, repeated games, and correlation.

Subjects

microeconomics | microeconomics | microeconomic theory | microeconomic theory | preference | preference | utility representation | utility representation | expected utility | expected utility | positive interpretation | positive interpretation | normative interpretation | normative interpretation | risk | risk | stochastic dominance | stochastic dominance | insurance | insurance | finance | finance | supermodularity | supermodularity | comparative statics | comparative statics | decision theory | decision theory | game theory | game theory | rationalizability | rationalizability | iterated strict dominance | iterated strict dominance | iterated conditional dominance | iterated conditional dominance | bargaining | bargaining | equilibrium | equilibrium | sequential equilibrium | sequential equilibrium | trembling-hand perfection | trembling-hand perfection | signaling games | signaling games | auctions | auctions | global games | global games | repeated games | repeated games | correlation | correlation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.642 Continuum Electromechanics (MIT) 6.642 Continuum Electromechanics (MIT)

Description

Includes audio/video content: AV faculty introductions. This course focuses on laws, approximations and relations of continuum electromechanics. Topics include mechanical and electromechanical transfer relations, statics and dynamics of electromechanical systems having a static equilibrium, electromechanical flows, and field coupling with thermal and molecular diffusion. Also covered are electrokinetics, streaming interactions, application to materials processing, magnetohydrodynamic and electrohydrodynamic pumps and generators, ferrohydrodynamics, physiochemical systems, heat transfer, continuum feedback control, electron beam devices, and plasma dynamics. Acknowledgements The instructor would like to thank Xuancheng Shao and Anyang Hou for transcribing into LaTeX the problem set solution Includes audio/video content: AV faculty introductions. This course focuses on laws, approximations and relations of continuum electromechanics. Topics include mechanical and electromechanical transfer relations, statics and dynamics of electromechanical systems having a static equilibrium, electromechanical flows, and field coupling with thermal and molecular diffusion. Also covered are electrokinetics, streaming interactions, application to materials processing, magnetohydrodynamic and electrohydrodynamic pumps and generators, ferrohydrodynamics, physiochemical systems, heat transfer, continuum feedback control, electron beam devices, and plasma dynamics. Acknowledgements The instructor would like to thank Xuancheng Shao and Anyang Hou for transcribing into LaTeX the problem set solution

Subjects

continuum mechanics | continuum mechanics | electromechanics | electromechanics | mechanical and electromechanical transfer relations | mechanical and electromechanical transfer relations | statics | statics | dynamics | dynamics | electromechanical systems | electromechanical systems | static equililbrium | static equililbrium | electromechanical flows | electromechanical flows | field coupling | field coupling | thermal and molecular diffusion | thermal and molecular diffusion | electrokinetics | electrokinetics | streaming interactions | streaming interactions | materials processing | materials processing | magnetohydrodynamic and electrohydrodynamic pumps and generators | magnetohydrodynamic and electrohydrodynamic pumps and generators | ferrohydrodynamics | ferrohydrodynamics | physiochemical systems | physiochemical systems | heat transfer | heat transfer | continuum feedback control | continuum feedback control | electron beam devices | electron beam devices | plasma dynamics | plasma dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.121 Microeconomic Theory I (MIT) 14.121 Microeconomic Theory I (MIT)

Description

This half-semester course provides an introduction to microeconomic theory designed to meet the needs of students in the economics Ph.D. program. Some parts of the course are designed to teach material that all graduate students should know. Others are used to introduce methodologies. Topics include consumer and producer theory, markets and competition, general equilibrium, and tools of comparative statics and their application to price theory. Some topics of recent interest may also be covered. This half-semester course provides an introduction to microeconomic theory designed to meet the needs of students in the economics Ph.D. program. Some parts of the course are designed to teach material that all graduate students should know. Others are used to introduce methodologies. Topics include consumer and producer theory, markets and competition, general equilibrium, and tools of comparative statics and their application to price theory. Some topics of recent interest may also be covered.

Subjects

microeconomic theory | microeconomic theory | demand theory | demand theory | producer theory; partial equilibrium | producer theory; partial equilibrium | competitive markets | competitive markets | general equilibrium | general equilibrium | externalities | externalities | Afriat's theorem | Afriat's theorem | pricing | pricing | robust comparative statics | robust comparative statics | utility theory | utility theory | properties of preferences | properties of preferences | choice as primitive | choice as primitive | revealed preference | revealed preference | classical demand theory | classical demand theory | Kuhn-Tucker necessary conditions | Kuhn-Tucker necessary conditions | implications of Walras?s law | implications of Walras?s law | indirect utility functions | indirect utility functions | theorem of the maximum (Berge?s theorem) | theorem of the maximum (Berge?s theorem) | expenditure minimization problem | expenditure minimization problem | Hicksian demands | Hicksian demands | compensated law of demand | compensated law of demand | Slutsky substitution | Slutsky substitution | price changes and welfare | price changes and welfare | compensating variation | compensating variation | and welfare from new goods | and welfare from new goods | price indexes | price indexes | bias in the U.S. consumer price index | bias in the U.S. consumer price index | integrability | integrability | demand aggregation | demand aggregation | aggregate demand and welfare | aggregate demand and welfare | Frisch demands | Frisch demands | and demand estimation | and demand estimation | increasing differences | increasing differences | producer theory applications | producer theory applications | the LeCh?telier principle | the LeCh?telier principle | Topkis? theorem | Topkis? theorem | Milgrom-Shannon monotonicity theorem | Milgrom-Shannon monotonicity theorem | monopoly pricing | monopoly pricing | monopoly and product quality | monopoly and product quality | nonlinear pricing | nonlinear pricing | and price discrimination | and price discrimination | simple models of externalities | simple models of externalities | government intervention | government intervention | Coase theorem | Coase theorem | Myerson-Sattherthwaite proposition | Myerson-Sattherthwaite proposition | missing markets | missing markets | price vs. quantity regulations | price vs. quantity regulations | Weitzman?s analysis | Weitzman?s analysis | uncertainty | uncertainty | common property externalities | common property externalities | optimization | optimization | equilibrium number of boats | equilibrium number of boats | welfare theorems | welfare theorems | uniqueness and determinacy | uniqueness and determinacy | price-taking assumption | price-taking assumption | Edgeworth box | Edgeworth box | welfare properties | welfare properties | Pareto efficiency | Pareto efficiency | Walrasian equilibrium with transfers | Walrasian equilibrium with transfers | Arrow-Debreu economy | Arrow-Debreu economy | separating hyperplanes | separating hyperplanes | Minkowski?s theorem | Minkowski?s theorem | Existence of Walrasian equilibrium | Existence of Walrasian equilibrium | Kakutani?s fixed point theorem | Kakutani?s fixed point theorem | Debreu-Gale-Kuhn-Nikaido lemma | Debreu-Gale-Kuhn-Nikaido lemma | additional properties of general equilibrium | additional properties of general equilibrium | Microfoundations | Microfoundations | core | core | core convergence | core convergence | general equilibrium with time and uncertainty | general equilibrium with time and uncertainty | Jensen?s inequality | Jensen?s inequality | and security market economy | and security market economy | arbitrage pricing theory | arbitrage pricing theory | and risk-neutral probabilities | and risk-neutral probabilities | Housing markets | Housing markets | competitive equilibrium | competitive equilibrium | one-sided matching house allocation problem | one-sided matching house allocation problem | serial dictatorship | serial dictatorship | two-sided matching | two-sided matching | marriage markets | marriage markets | existence of stable matchings | existence of stable matchings | incentives | incentives | housing markets core mechanism | housing markets core mechanism

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.45 Magnetic Materials (MIT)

Description

This course will cover the following topics: Magnetostatics Origin of magnetism in materials Magnetic domains and domain walls Magnetic anisotropy Reversible and irreversible magnetization processes Hard and soft magnetic materials Magnetic recording Special topics include magnetism of thin films, surfaces and fine particles; transport in ferromagnets, magnetoresistive sensors, and amorphous magnetic materials.

Subjects

Magnetostatics; magnetism; magnetic domains and domain walls; magnetic anisotropy; reversible and irreversible magnetization; hard and soft magnetic materials; magnetic recording; thin films; ferromagnets | magnetoresistive sensors; amorphous magnetic materials | Magnetostatics | magnetism | magnetic domains and domain walls | magnetic anisotropy | reversible and irreversible magnetization | hard and soft magnetic materials | magnetic recording | thin films | ferromagnets | magnetoresistive sensors | amorphous magnetic materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.491 Form-Finding and Structural Optimization: Gaudi Workshop (MIT) 4.491 Form-Finding and Structural Optimization: Gaudi Workshop (MIT)

Description

Inspired by the work of the architect Antoni Gaudi, this research workshop will explore three-dimensional problems in the static equilibrium of structural systems. Through an interdisciplinary collaboration between computer science and architecture, we will develop design tools for determining the form of three-dimensional structural systems under a variety of loads. The goal of the workshop is to develop real-time design and analysis tools which will be useful to architects and engineers in the form-finding of efficient three-dimensional structural systems. Inspired by the work of the architect Antoni Gaudi, this research workshop will explore three-dimensional problems in the static equilibrium of structural systems. Through an interdisciplinary collaboration between computer science and architecture, we will develop design tools for determining the form of three-dimensional structural systems under a variety of loads. The goal of the workshop is to develop real-time design and analysis tools which will be useful to architects and engineers in the form-finding of efficient three-dimensional structural systems.

Subjects

structures | structures | statics | statics | architecture | architecture | Gaudi | Gaudi | Barcelona | Barcelona | computer science | computer science | structural systems | structural systems | computer modeling | computer modeling | advanced dynamics | advanced dynamics | form-finding | form-finding | shaping structures | shaping structures | mesh generation | mesh generation | procedural methods for creating structural elements | procedural methods for creating structural elements | physical simulation procedures | physical simulation procedures | interactive design tools | interactive design tools | structural analysis | structural analysis | computer graphics | computer graphics | mathematics of nodal systems | mathematics of nodal systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.448 Analysis of Historic Structures (MIT) 4.448 Analysis of Historic Structures (MIT)

Description

An analysis of historical structures is presented themed sections based around construction materials. Structures from all periods of history are analyzed. The goal of the class is to provide an understanding of the preservation of historic structures for all students. An analysis of historical structures is presented themed sections based around construction materials. Structures from all periods of history are analyzed. The goal of the class is to provide an understanding of the preservation of historic structures for all students.

Subjects

sructures | sructures | architecture | architecture | design | design | construction | construction | materials | materials | structural analysis | structural analysis | statics | statics | masonry | masonry | timber | timber | concrete | concrete | steel | steel | structural types | structural types | structural systems | structural systems | medieval | medieval | renaissance | renaissance | modern | modern

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Physics II: Electricity and Magnetism (MIT) 8.02 Physics II: Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Staff List Visualizations: Prof. John Belcher Instructors: Dr. Peter Dourmashkin Prof. Bruce Knuteson Prof. Gunther Roland Prof. Bolek Wyslouch Dr. Brian Wecht Prof. Eric Katsavounidis Prof. Robert Simcoe Prof. Joseph Formaggio Course Co-Administrators: Dr. Peter Dourmashkin Prof. Robert Redwine Technical Instructors: Andy Neely Matthew Strafuss Course This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Staff List Visualizations: Prof. John Belcher Instructors: Dr. Peter Dourmashkin Prof. Bruce Knuteson Prof. Gunther Roland Prof. Bolek Wyslouch Dr. Brian Wecht Prof. Eric Katsavounidis Prof. Robert Simcoe Prof. Joseph Formaggio Course Co-Administrators: Dr. Peter Dourmashkin Prof. Robert Redwine Technical Instructors: Andy Neely Matthew Strafuss Course

Subjects

electromagnetism | electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | potential | potential | electrostatic energy | electrostatic energy | Electric currents | Electric currents | magnetic fields | magnetic fields | Ampere's law | Ampere's law | Magnetic materials | Magnetic materials | Time-varying fields | Time-varying fields | Faraday's law of induction | Faraday's law of induction | electric circuits | electric circuits | Electromagnetic waves | Electromagnetic waves | Maxwell's equations | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.700 Principles of Naval Architecture (MIT) 2.700 Principles of Naval Architecture (MIT)

Description

This course presents principles of naval architecture, ship geometry, hydrostatics, calculation and drawing of curves of form, intact and damage stability, hull structure strength calculations and ship resistance. It introduces computer-aided naval ship design and analysis tools. Projects include analysis of ship lines drawings, calculation of ship hydrostatic characteristics, analysis of intact and damaged stability, ship model testing, and hull structure strength calculations. This course presents principles of naval architecture, ship geometry, hydrostatics, calculation and drawing of curves of form, intact and damage stability, hull structure strength calculations and ship resistance. It introduces computer-aided naval ship design and analysis tools. Projects include analysis of ship lines drawings, calculation of ship hydrostatic characteristics, analysis of intact and damaged stability, ship model testing, and hull structure strength calculations.

Subjects

naval architecture | naval architecture | ship geometry | ship geometry | geometry of ships | geometry of ships | ship resistance | ship resistance | flow | flow | hydrostatics | hydrostatics | intact stability | intact stability | damage stability | damage stability | general stability | general stability | hull | hull | hydrostatic | hydrostatic | ship model testing | ship model testing | hull structure | hull structure | Resistance | Resistance | Propulsion | Propulsion | Vibration | Vibration | submarine | submarine | hull subdivision | hull subdivision | midsection | midsection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.07 Electromagnetism II (MIT)

Description

This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell's equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics.

Subjects

electromagnetic phenomena | electrostatics | magnetostatics | electromagnetic properties of matter | Time-dependent electromagnetic fields | Maxwell's equations | Electromagnetic waves | emission | absorption | scattering of radiation | Relativistic electrodynamics | mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetism with an Experimental Focus (MIT) Magnetism with an Experimental Focus (MIT)

Description

This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli. This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.

Subjects

Electromagnetism | Electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | electrostatic potential | electrostatic potential | electrostatic energy | electrostatic energy | electric current | electric current | magnetic field | magnetic field | Ampere's law | Ampere's law | magnetic | magnetic | electric | electric | time-varying fields | time-varying fields | Faraday's law | Faraday's law | induction | induction | circuits | circuits | electromagnetic waves | electromagnetic waves | Maxwell's equations | Maxwell's equations | 8.02 | 8.02

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

14.121 Microeconomic Theory I (MIT) 14.121 Microeconomic Theory I (MIT)

Description

This course provides an introduction to microeconomic theory and is the first course in the microeconomic theory series. It is intended for graduate students in the economics program. Some components of the course are designed to teach material that all graduate students should know while others are used to introduce methodologies. Topics of recent interest will also be covered and may include: theories of production and individual choice (under certainty and uncertainty); markets and competition; tools of comparative statics and their application to price theory. This course provides an introduction to microeconomic theory and is the first course in the microeconomic theory series. It is intended for graduate students in the economics program. Some components of the course are designed to teach material that all graduate students should know while others are used to introduce methodologies. Topics of recent interest will also be covered and may include: theories of production and individual choice (under certainty and uncertainty); markets and competition; tools of comparative statics and their application to price theory.

Subjects

microeconomic theory | microeconomic theory | theories of production and individual choice (under certainty and uncertainty) | theories of production and individual choice (under certainty and uncertainty) | markets and competition | markets and competition | tools of comparative statics and their application to price theory | tools of comparative statics and their application to price theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.07 Electromagnetism II (MIT)

Description

This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell's equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics.

Subjects

electromagnetic phenomena | electrostatics | magnetostatics | electromagnetic properties of matter | Time-dependent electromagnetic fields | Maxwell's equations | Electromagnetic waves | emission | absorption | scattering of radiation | Relativistic electrodynamics | mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02T Electricity and Magnetism (MIT) 8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, a This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, a

Subjects

electromagnetism | electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | potential | potential | electrostatic energy | electrostatic energy | Electric currents | Electric currents | magnetic fields | magnetic fields | Ampere's law | Ampere's law | Magnetic materials | Magnetic materials | Time-varying fields | Time-varying fields | Faraday's law of induction | Faraday's law of induction | electric circuits | electric circuits | Electromagnetic waves | Electromagnetic waves | Maxwell's equations | Maxwell's equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.311 Electromagnetic Theory (MIT) 8.311 Electromagnetic Theory (MIT)

Description

Electromagnetic Theory covers the basic principles of electromagnetism: experimental basis, electrostatics, magnetic fields of steady currents, motional e.m.f. and electromagnetic induction, Maxwell's equations, propagation and radiation of electromagnetic waves, electric and magnetic properties of matter, and conservation laws. This is a graduate level subject which uses appropriate mathematics but whose emphasis is on physical phenomena and principles. Electromagnetic Theory covers the basic principles of electromagnetism: experimental basis, electrostatics, magnetic fields of steady currents, motional e.m.f. and electromagnetic induction, Maxwell's equations, propagation and radiation of electromagnetic waves, electric and magnetic properties of matter, and conservation laws. This is a graduate level subject which uses appropriate mathematics but whose emphasis is on physical phenomena and principles.

Subjects

electromagnetism | electromagnetism | electrostatics | electrostatics | magnetic fields of steady currents | magnetic fields of steady currents | motional e.m.f. | motional e.m.f. | electromagnetic induction | electromagnetic induction | Maxwell's equations | Maxwell's equations | propagation and radiation | propagation and radiation | electromagnetic waves | electromagnetic waves | electric properties of matter | electric properties of matter | magnetic properties of matter | magnetic properties of matter | conservation laws | conservation laws | electromagnetic waves | electric properties of matter | electromagnetic waves | electric properties of matter | conservation laws. | conservation laws.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Electricity and Magnetism: TEAL:Studio Physics Project (MIT) 8.02 Electricity and Magnetism: TEAL:Studio Physics Project (MIT)

Description

Introduction to electromagnetism and electrostatics: electric charge, Coulomb's law, electric structure of matter; conductors and dielectrics. Concepts of electrostatic field and potential, electrostatic energy. Electric currents, magnetic fields and Ampere's law. Magnetic materials. Time-varying fields and Faraday's law of induction. Basic electric circuits. Electromagnetic waves and Maxwell's equations.Staff Credits for TEAL Visualizations:Project Manager: Andrew McKinneyJava 3D Applets: Andrew McKinney, Philip Bailey, Pierre Poignant, Ying Cao, Ralph Rabat, Mikael Rechtsman3D Illustration/Animation: Mark BessetteShockWave Visualizations: Michael DanzigerVisualization Techniques R&D: Andreas Sundquist (DLIC), Mesrob Ohannessian (IDRAW)Technical RequirementsRealOne™ Introduction to electromagnetism and electrostatics: electric charge, Coulomb's law, electric structure of matter; conductors and dielectrics. Concepts of electrostatic field and potential, electrostatic energy. Electric currents, magnetic fields and Ampere's law. Magnetic materials. Time-varying fields and Faraday's law of induction. Basic electric circuits. Electromagnetic waves and Maxwell's equations.Staff Credits for TEAL Visualizations:Project Manager: Andrew McKinneyJava 3D Applets: Andrew McKinney, Philip Bailey, Pierre Poignant, Ying Cao, Ralph Rabat, Mikael Rechtsman3D Illustration/Animation: Mark BessetteShockWave Visualizations: Michael DanzigerVisualization Techniques R&D: Andreas Sundquist (DLIC), Mesrob Ohannessian (IDRAW)Technical RequirementsRealOne™

Subjects

dielectrics | dielectrics | conductors | conductors | electric structure of matter | electric structure of matter | Coulomb's law | Coulomb's law | electrostatics | electrostatics | electromagnetism | electromagnetism

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata